Bound on A ~x

Lu, v ; x in [16, 4.18], so that [16, Lemma 4.4] also applies to P N x . For N = 0 with d 4, we have cf., 5.36 X x P x, t ≡ X x P x, t = X x δ x,o δ t,0 + Lo, 0, o, 0; x, t ≤ δ t,0 + ǫ 2 O β 1 + t d 2 . 5.63 The factor O β is replaced by Oβ T if d ≤ 4. For N ≥ 1, we apply Lemma 5.4 to 5.63 N times. We now relate P N x with P N x . Note that, by 5.13–5.14, we have P N x = P N −1 〈u〉; 2 1 〈u〉 〈w 〉, 2 〈w 〉 x = P N −1 〈u〉; 2 1 〈u〉 x + P N −1 〈u〉; 2 1 〈u〉 〈w 〉, 2 1 〈w 〉 x . 5.64 It follows by 5.62 and 5.64 that P N x = N X M =0 N M P N +M x ≤ 2 N N X M =0 P N +M x . 5.65 where the inequality is due to N M ≤ 2 N . By Lemma 5.4, we have, for d 4, X x |x| q P N t x ≤ δ q,0 δ t,0 δ N ,0 + ǫ 2 c β 1 ∨N σ q 1 + t d−q2 N ≥ 0, 5.66 for some c ∞. For d ≤ 4, we can simply replace β 1 ∨N by β T ˆ β ∨N−1 T and σ 2 by σ 2 T . Therefore, X x |x| q P N t x ≤ 2 N N X M =0 X x |x| q P N +M t x ≤ 2 N N X M =0 δ q,0 δ t,0 δ N +M ,0 + ǫ 2 c β N +M σ q 1 + t d−q2 ≤ δ q,0 δ t,0 δ N ,0 + ǫ 2 2c β N 1 − cβ σ q 1 + t d−q2 . 5.67 This completes the proof of Lemma 5.7.

5.3 Bound on A

~x J In this section, we investigate A ~x J . First, in Section 5.3.1, we prove a d-independent diagrammatic bound on A N v , ~x J ; C, where we recall A N ~x J = A N

o, ~x

J ; {o} in 3.25. Then, in Section 5.3.2, we prove the bound 5.2 for d 4 and the bound 5.4 for d ≤ 4 simultaneously.

5.3.1 Diagrammatic bound on A

N v , ~x J ; C The main result proved in this section is the following proposition: Lemma 5.8 Diagrammatic bound on A N v , ~x J ; C. For r ≥ 3, ~x J ∈ Λ r −1 , v ∈ Λ and C ⊂ Λ, A N v , ~x J ; C 5.68 ≤        X I 6=∅,J 1 {v∈C} P {v −→ ~x I } ◦ {v −→ ~x J \I } + X z 6=v P v , z; C, ℓ~x I τ~x J \I − z N = 0, X I 6=∅,J X z P N v , z; C τ~x I − z + P N v , z; C, ℓ~x I τ~x J \I − z N ≥ 1. 852 To prove Lemma 5.8, we first note that, by 3.16–3.17 and 3.19–3.20, A N v , ~x J ; C =    P E ′ v , ~x J ; C N = 0, P b N p b N M N v ,b N ; C P E ′ b N , ~x J ; ˜ C N −1 N ≥ 1. 5.69 Thus, we are lead to study P E ′ v , ~x J ; C . As a result, Lemma 5.8 is a consequence of the following lemma: Lemma 5.9. For r ≥ 3, ~x J ∈ Λ r −1 , v ∈ Λ and C ⊂ Λ, P E ′ v , ~x J ; C ≤ X I 6=∅,J 1 {v∈C} P {v −→ ~x I } ◦ {v −→ ~x J \I } + X z 6=v P v , z; C, ℓ~x I τ~x J \I − z . 5.70 Proof of Lemma 5.8 assuming Lemma 5.9. Since Lemma 5.9 and 5.69 immediately imply 5.68 for N = 0, it thus suffices to prove 5.68 for N ≥ 1. Substituting 5.70 with v = b N , C = ˜ C N −1 into 5.69 and then using 5.51–5.52, we obtain A N v , ~x J ; C ≤ X I 6=∅,J X b N p b N M N v ,b N ; C 1 {b N ∈˜C N −1 } P {b N −→ ~x I } ◦ {b N −→ ~x J \I } + X z 6=b N M N v ,b N ; C P b N , z; ˜ C N −1 , ℓ~x I τ~x J \I − z ≤ X I 6=∅,J X z ‚X η X b N P N −1 v , b N ; C; ℓ η b N p b N δ b N ,z | {z } X P {z −→ ~x I } ◦ {z −→ ~x J \I } + X η X c X b N b N 6=z P N −1 v , b N ; C; ℓ η c p b N P b N , z; c, ℓ~x I | {z } Y τ~x J \I − z Œ , 5.71 where P η is the sum over the N − 1 st admissible lines for P N −1 v , b N ; C. Ignoring the restriction b N 6= z and using an extension of 5.53, we obtain Y ≤ P N v , z; C, ℓ~x I . 5.72 For X , we use 5.36 and 5.39 to obtain X ≤ X η X b N P N −1 v , b N ; C; ℓ η b N p b N P b N , z; b N ≤ X η X y X b N P N −1 v , b N ; C; ℓ η y p b N P b N , z; y = P N v , z; C. 5.73 Finally, we use the BK inequality to bound P {z −→ ~x I } ◦ {z −→ ~x J \I } by τ~x I − z τ~x J \I − z. This completes the proof. 853 Proof of Lemma 5.9. Recall 5.43. We show below that E ′ v , ~x J ; C ⊂ [ I 6=∅,J [ z n E v, z; C ∩ {v −→ ~x I } ◦ {z −→ ~x J \I } o . 5.74 First, we prove 5.70 assuming 5.74. Substituting 5.74 into PE ′ v , ~x J ; C, we have P E ′ v , ~x J ; C ≤ X I 6=∅,J X z P E v, z; C ∩ {v −→ ~x I } ◦ {z −→ ~x J \I } 5.75 = X I 6=∅,J 1 {v∈C} P {v −→ ~x I } ◦ {v −→ ~x J \I } + X z 6=v P E v, z; C ∩ {v −→ ~x I } ◦ {z −→ ~x J \I } . For the sum over z 6= v, we use the BK inequality to extract Pz −→ ~x J \I ≡ τ~x J \I − z and apply the following inequality that is a result of an extension of the argument around 5.46: P Ev, z; C ∩ {v −→ ~x I } ≤ P v , z; C, ℓ~x I . 5.76 This completes the proof of 5.70. It remains to prove 5.74. Summarising 4.5–4.9, we can rewrite E ′ v , ~x J ; C as E ′ v , ~x J ; C = ˙ [ j ∈J n {v −→ ~x J } ∩ v C −→ x 1 , . . . , x j −1 c ∩ E ′ v , x j ; C o ∩ ∄ pivotal bond b for v −→ x i ∀i such that v C −→ b ˙ ∪ ¨ ˙ [ ∅6=IJ ˙ [ b n {v −→ ~x I } ∩ v C −→ x 1 , . . . , x j I −1 c ∩ E ′ v , b; C in ˜ C b v o ∩ {b is occupied} ∩ b −→ ~x J \I in Λ \ ˜C b v « . 5.77 Ignoring {v C −→ x 1 , . . . , x j −1 } c and {∄ pivotal bond b for v −→ x i ∀i such that v C −→ b} and using E ′ v , z; C ⊂ E v, z; C, we have E ′ v , ~x J ; C ⊂ [ j ∈J E v, x j ; C ∩ {v −→ ~x J j } ∪ [ ∅6=IJ [ z n E v, z; C ∩ {v −→ ~x I } ◦ {z −→ ~x J \I } o . 5.78 Note that the first event on the right-hand side is a subset of the second event, when I = J j and z = x j , for which J \ I = { j} and {z −→ ~x J \I } = {x j −→ x j } is the trivial event. This completes the proof of 5.74 and hence of Lemma 5.9. 854

5.3.2 Proof of the bound on A

N ~x

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52