w ; ˜ C ℓa getdoc6cef. 1092KB Jun 04 2011 12:04:29 AM

Using 6.43 and following the argument below 6.67, we obtain P E ′ b N , b N +1 ; ˜ C N −1 ∩ E t bN+1 + ǫ b N , y 2 ; ˜ C N −1 ∩ {~x ∈ ˜C N } ≤ P ‚ E ′ b N , b N +1 ; ˜ C N −1 ∩ [ c ,w ∈˜C N −1 [ z ∈Λ t z t bN+1 n {b N −→ z} ◦ {z −→ w } ◦ {w −→ y 2 } ◦ {z −→ y 2 } o ∩ n {c = w , z 6−→ w − } ∪ {c 6= w − , c, w ∈ ˜C N −1 } o ∩ {~x ∈ ˜C N } Œ . 6.69 Similarly to the above, E ′ b N , b N +1 ; ˜ C N −1 implies the existence of disjoint connections necessary to obtain the bounding diagram P b N , b N +1 ; ˜ C N −1 . The event subject to the union over z is accounted for by an application of Construction Bu followed by multiplication of the sum of S

u, w ; ˜ C

N −1 , 2 w y 2 over w with t w t b N +1 , resulting in the bounding diagram X u ,w t w t bN+1 P b N , b N +1 ; ˜ C N −1 , Bu S u , w ; ˜ C N −1 , 2 w y 2 . 6.70 The event {~x ∈ ˜C N } is accounted for by applying Construction ℓ~x I to P b N , b N +1 ; ˜ C N −1 , Bu and Construction ℓ~x J \I to S u, w ; ˜ C N −1 , 2 w y 2 , followed by the summation over I ⊂ J. Then, by 5.32 and 5.35, we have 6.68 ≤ X I ⊂J X a ,u,w t w t bN+1 X b N p b N M 1 b N −1 ,b N ;˜ C N −2 P b N , b N +1 ; ˜ C N −1 , Bu, ℓ~x I 1 {a∈˜C N −1 } × S 0,0 u , w ; a, 2 w y 2 , ℓ~x J \I + M 1 b N −1 ,b N ;˜ C N −2 P b N , b N +1 ; ˜ C N −1 , Bu, ℓ~x I 1 {a,w ∈˜C N −1 } × 1 − δ a ,w − S 0,1 u , w ; a, 2 w y 2 , ℓ~x J \I . 6.71 Note that P b N , b N +1 ; ˜ C N −1 , Bu is a random variable since ˜ C N −1 is random which depends only on bonds in the time interval [t b N , t b N +1 ], and that t a ≥ t b N +1 , which is due to 5.29–5.30 and the restriction on t w . Therefore, by the Markov property cf., 5.48 and 5.34, 6.71 ≤ X I ⊂J X a ,u t a ≥t bN+1 P u , y 2 ; a, ℓ~x J \I × X b N p b N M 1 b N −1 ,b N ;˜ C N −2 P b N , b N +1 ; ˜ C N −1 , Bu, ℓ~x I 1 {a∈˜C N −1 } . 6.72 We need some care to estimate M 1 b N −1 ,b N ;˜ C N −2 P b N , b N +1 ; ˜ C N −1 , Bu, ℓ~x I 1 {a∈˜C N −1 } in 6.72. 868 First, by 5.32 and t v ≤ t b N +1 ≤ t a , we obtain M 1 b N −1 ,b N ;˜ C N −2 P b N , b N +1 ; ˜ C N −1 , Bu, ℓ~x I 1 {a∈˜C N −1 } ≤ X c ,v t v ≤t a M 1 b N −1 ,b N ;˜ C N −2 1 {c,a∈˜C N −1 } S 0,0 b N , v ; c, 2 v b N +1 , Bu, ℓ~x I + M 1 b N −1 ,b N ;˜ C N −2 1 {c,v∈˜C N −1 } 1 {a∈˜C N −1 } 1 − δ c ,v − × S 0,1 b N , v ; c, 2 v b N +1 , Bu, ℓ~x I . 6.73 By the BK inequality, the second M 1 on the right-hand side is bounded as M 1 b N −1 ,b N ;˜ C N −2 1 {c,v∈˜C N −1 } 1 {a∈˜C N −1 } 1 − δ c ,v − ≤ M 1 b N −1 ,b N ;˜ C N −2 1 {c∈˜C N −1 } 1 {c,v occupied}◦{a∈˜C N −1 } + 1 {c,v−→a} 1 − δ c ,v − ≤ M 1 b N −1 ,b N ;˜ C N −2 1 {c,a∈˜C N −1 } + M 1 b N −1 ,b N ;˜ C N −2 1 {c∈˜C N −1 } τa − v λǫDv − c. 6.74 Substituting this back into 6.73 and using 5.31 and 5.35, we obtain 6.73 ≤ X c M 1 b N −1 ,b N ;˜ C N −2 1 {c,a∈˜C N −1 } P b N , b N +1 ; c, Bu, ℓ~x I + M 1 b N −1 ,b N ;˜ C N −2 1 {c∈˜C N −1 } × X v τa − v λǫDv − c S 0,1 b N , v ; c, 2 v b N +1 , Bu, ℓ~x I . 6.75 We will show below that τa − v S 0,1 b N , v ; c, 2 v b N +1 , Bu, ℓ~x I ≤ S 0,1 b N , v ; c, 2 v b N +1 , Bu, ℓ~x I , ℓa . 6.76 Assuming this and using 5.31 and 5.35, we obtain X v τa − v λǫDv − c S 0,1 b N , v ; c, 2 v b N +1 , Bu, ℓ~x I ≤ P b N , b N +1 ; c, Bu, ℓ~x I , ℓa , 6.77 hence 6.75 ≤ X c M 1 b N −1 ,b N ;˜ C N −2 1 {c,a∈˜C N −1 } P b N , b N +1 ; c, Bu, ℓ~x I + M 1 b N −1 ,b N ;˜ C N −2 1 {c∈˜C N −1 } P b N , b N +1 ; c, Bu, ℓ~x I , ℓa . 6.78 Further, by a version of 5.55, we have M 1 b N −1 ,b N ;˜ C N −2 1 {c∈˜C N −1 } ≤ X η P b N −1 , b N ; ˜ C N −2 , ℓ η c , 6.79 M 1 b N −1 ,b N ;˜ C N −2 1 {c,a∈˜C N −1 } ≤ X η P b N −1 , b N ; ˜ C N −2 , ℓ η

c, ℓa

, 6.80 869 where P η is the sum over the admissible lines of the diagram P b N −1 , b N ; ˜ C N −2 . Using these inequalities and Lemma 5.6, the sum over b N in the second line of 6.72 is bounded as X b N p b N M 1 b N −1 ,b N ;˜ C N −2 P b N , b N +1 ; ˜ C N −1 , Bu, ℓ~x I 1 {a∈˜C N −1 } ≤ X η X c X b N P b N −1 , b N ; ˜ C N −2 , ℓ η

c, ℓa

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52