Induction in r getdoc6cef. 1092KB Jun 04 2011 12:04:29 AM

O β and λ ǫ c = 1 + O β uniformly in ǫ, we have ˆ ψ 2 ǫ,2ǫ 0, 0 = 1 − ǫ + λ ǫ c ǫ ‚ 1 − ǫ + λ ǫ c ǫ 2 − 1 − ǫ 2 + λ ǫ c ǫ 2 X x Dx 2 | {z } 2−ǫ+Oβǫλ ǫ c ǫ Œ = 2 − ǫ + Oβ ǫ. Combining this with 2.36 yields V ǫ = 2 − ǫ + Oβ. 2.41 This establishes the claim on V of Theorem 1.2i. For d ≤ 4, on the other hand, β = β T converges to zero as T ↑ ∞, so that V ǫ is replaced by 2 − ǫ in Theorem 2.1ii.

2.4 Induction in r

In this section, we prove Theorem 2.1 for ǫ ∈ 0, 1] fixed, assuming 2.30 and Proposition 2.2. The argument in this section is an adaptation of the argument in [20, Section 2.3], adapted so as to deal with the uniformity in the time discretization. In particular, in this section, we prove Theorem 2.1 for oriented percolation for which ǫ = 1. For r ≥ 3, we will use the notation ¯t = the second-largest element of {t 1 , . . . , t r −1 }, t = min {t 1 , . . . , t r −1 }. 2.42 Proof of Theorem 2.1i assuming Proposition 2.2. We prove that for d 4 there are positive con- stants L = L d and V ǫ = V ǫ d, L such that for λ = λ ǫ c , L ≥ L and κ ∈ 0, 1 ∧ ∆ ∧ d −4 2 , we have ˆ τ r ~t ~k p v ǫ σ 2 t = A ǫ A ǫ 2 V ǫ t r −2 ˆ M r−1 ~tt ~k + O ¯t + 1 −κ r ≥ 3 2.43 uniformly in t ≥ ¯t and in ~k ∈ R r−1d with P r −1 i=1 |k i | 2 bounded, and uniformly in ǫ 0. To prove Theorem 2.1i, we take t = T and replace ~t by T~t. Since, without loss of generality, we may assume that max i t i = 1 and t i ≤ 1, we thus have that T ≥ T ¯t, so that 2.43 indeed proves Theorem 2.1i. We prove 2.43 by induction in r, with the initial case of r = 2 given by Theorem 2.1i: ˆ τ t 1 k p v ǫ σ 2 t = ˆ τ t 1 k p t 1 t p v ǫ σ 2 t 1 = A ǫ e − |k| 2 t 1 2d t + O t 1 + 1 −κ , 2.44 using the facts that |k| 2 is bounded, t 1 ≤ t and κ d −4 2 . The induction will be advanced using 2.30. Let r ≥ 3. By 2.37, ˆ ζ r ~t ~k is an error term. Thus, we are left to determine the asymptotic behaviour of the first term on the right-hand side of 2.30. Fix ~k with P r −1 i=1 |k i | 2 bounded. To abbreviate the notation, we write ~k t = ~k p v ǫ σ 2 t . 2.45 816 Given 0 ≤ s ≤ t, let t = s ∧ t − s . We show that, for every nonempty subset I ⊂ J 1 , t J \I −s X • s 1 =2 ǫ t I −s X • s 2 =2 ǫ ˆ ψ s 1 ,s 2 k t J \I , k t I ˆ τ r1 ~t J \I −s 1 −s ~k t J \I ˆ τ r2 ~t I −s 2 −s ~k t I − V ǫ ˆ τ r1 ~t J \I −s ~k t J \I ˆ τ r2 ~t I −s ~k t I ≤ Cǫt r −3 t + 1 −κ . 2.46 Before establishing 2.46, we first show that it implies 2.43. Since |ˆ τ s k t | is uniformly bounded by Theorem 2.1 for r = 2, inserting 2.46 into 2.30 and applying 2.37 gives ˆ τ r ~t ~k t = V ǫ ǫ t X • s =0 ˆ τ s k t X I ⊂J 1 : |I|≥1 ˆ τ r1 ~t J \I −s ~k t J \I ˆ τ r2 ~t I −s ~k t I + Ot r −3 ǫ t X • s =0 t + 1 −κ + Ot r −2−κ . 2.47 Using the fact that κ 1, the summation in the error term can be seen to be bounded by a multiple of t 1 −κ ≤ t 1 −κ . With the induction hypothesis and the identity r 1 + r 2 = r + 1, 2.47 then implies that ˆ τ r ~t ~k t = A ǫ A ǫ 2 V ǫ t r −2 ǫ t X • s =0 ˆ M 1 s t k X I ⊂J 1 : |I|≥1 ˆ M r1−1 ~tJ\I −s0 t ~k J \I ˆ M r2−1 ~tI −s0 t ~k I + Ot r −2−κ , 2.48 where the error arising from the error terms in the induction hypothesis again contributes an amount Ot r −3 ǫ X • t s =0 t + 1 −κ ≤ Ot r −2−κ . The summation on the right-hand side of 2.48, divided by t, is the Riemann sum approximation to an integral. The error in approximating the integral by this Riemann sum is O ǫt −1 . Therefore, using 1.17, we obtain ˆ τ r ~t ~k t = A ǫ A ǫ 2 V ǫ t r −2 Z t t ds ˆ M 1 s k X I ⊂J 1 : |I|≥1 ˆ M r1−1 ~tJ\I −s0 t ~k J \I ˆ M r2−1 ~tI −s0 t ~k I + Ot r −2−κ = A ǫ A ǫ 2 V ǫ t r −2 ˆ M r−1 ~tt ~k + Ot r −2−κ . 2.49 Since t ≥ ¯t, it follows that t r −2−κ ≤ C t r −2 ¯t + 1 −κ . Thus, it suffices to establish 2.46. To prove 2.46, we write the quantity inside the absolute value signs on the left-hand side as t J \I −s X • s 1 =2 ǫ t I −s X • s 2 =2 ǫ ˆ ψ s 1 ,s 2 k t J \I , k t I ˆ τ r1 ~t J \I −s 1 −s ~k t J \I ˆ τ r2 ~t I −s 2 −s ~k t I − V ǫ ˆ τ r1 ~t J \I −s ~k t J \I ˆ τ r2 ~t I −s ~k t I = T 1 + T 2 + T 3 , 2.50 817 with T 1 = ˆ τ r1 ~t J \I −s ~k t J \I ˆ τ r2 ~t I −s ~k t I t J \I −s X • s 1 =2 ǫ t I −s X • s 2 =2 ǫ ˆ ψ s 1 ,s 2 0, 0 − V ǫ , 2.51 T 2 = ˆ τ r1 ~t J \I −s ~k t J \I ˆ τ r2 ~t I −s ~k t I t J \I −s X • s 1 =2 ǫ t I −s X • s 2 =2 ǫ ˆ ψ s 1 ,s 2 k t J \I , k t I − ˆ ψ s 1 ,s 2 0, 0 , 2.52 T 3 = t J \I −s X • s 1 =2 ǫ t I −s X • s 2 =2 ǫ ˆ ψ s 1 ,s 2 k t J \I , k t I × ˆ τ r1 ~t J \I −s 1 −s ~k t J \I ˆ τ r2 ~t I −s 2 −s ~k t I − ˆ τ r1 ~t J \I −s ~k t J \I ˆ τ r2 ~t I −s ~k t I . 2.53 To complete the proof, it suffices to show that for each nonempty I ⊂ J 1 , the absolute value of each T i is bounded above by the right-hand side of 2.46. In the course of the proof, we will make use of some bounds on sums involving b ǫ s 1 ,s 2 : Lemma 2.3 Bounds on sums involving b ǫ s 1 ,s 2 . i Let d 4. For every κ ∈ [0, 1 ∧ d −4 2 , there exists a constant C = Cd, κ such that the following bounds hold uniformly in ǫ ∈ 0, 1] ∞ X • s 1 ,s 2 =2 ǫ s 1 ∨s 2 ≤s s i b ǫ s 1 ,s 2 + b ǫ s 2 ,s 1 ≤ Cǫ1 + s 1 −κ , ∞ X • s 1 ,s 2 =2 ǫ s 1 ∨s 2 ≥s b ǫ s 1 ,s 2 ≤ Cǫ1 + s −κ . 2.54 ii Let d ≤ 4 with α ≡ bd − 4 −d 2 0, fix α ∈ 0, α, recall β T = β 1 T −bd and let ˆ β T = β 1 T −α . There exists a constant C = Cd, κ such that the following bound holds uniformly in ǫ ∈ 0, 1] β T T log T X • s 1 ,s 2 =2 ǫ s 1 ∨s 2 2ǫ δ s 1 ,s 2 + β T b ǫ s 1 ,s 2 + b ǫ s 2 ,s 1 ≤ C ˆ β T ǫ. 2.55 Proof. i This is straightforward from 2.31, when we pay special attention to the number of powers of ǫ present in b ǫ s 1 ,s 2 and use the fact that the power of 1 + s 1 and of 1 + s 2 − s 1 is d − 22 1. ii We shall only perform the proof for d 4, as the proof for d = 4 is a slight modification of the argument below. Using 2.31, we can perform the sum to obtain LHS of 2.55 ≤ Oβ T ǫ 2 X • 2 ǫs 1 ≤T log T 1 + s 1 2−d2 + O β 2 T ǫ 3 X • 2 ǫ≤s 1 s 2 ≤T log T 1 + s 1 2−d2 1 + s 2 − s 1 2−d2 ≤ Oβ T ǫ 1 + T log T 4−d2 1 + β T 1 + T log T 4−d2 ≤ O ˆ β T ǫ1 + ˆ β T , 2.56 as long as α ∈ 0, α. This proves 2.55. 818 We now resume proving 2.46. By the induction hypothesis and the fact that ¯t I i ≤ t, it follows that |ˆ τ ri ~t Ii ~k I i | ≤ Ot r i −2 uniformly in ~t I i and ~k I i . Therefore, it follows from 2.36 and the definition of V ǫ in 2.40 that |T 1 | ≤ X • s 1 ≥t J \I −s or s 2 ≥t I −s Ot r −3 b ǫ s 1 ,s 2 ≤ Oǫt r −3 t + 1 −d−42 , 2.57 where the final bound follows from the second bound in 2.54. Similarly, by 2.36 with q = 2, now using the first bound in 2.54, |T 2 | ≤ t J \I −s X • s 1 =2 ǫ t I −s X • s 2 =2 ǫ s 1 |k t J \I | 2 + s 2 |k t I | 2 Ot r −3 b ǫ s 1 ,s 2 ≤ Oǫt r −3 t + 1 −κ , 2.58 using that t r −4 t + 1 1 −κ ≤ t r −3 t + 1 −κ since t ≥ t . It remains to prove that |T 3 | ≤ Oǫt r −3 t + 1 −κ . 2.59 To begin the proof of 2.59, we note that the domain of summation over s 1 , s 2 in 2.53 is contained in ∪ 2 j=0 S j ~t, where S ~t = [0, 1 2 t J \I − s ] × [0, 1 2 t I − s ], S 1 ~t = [ 1 2 t J \I − s , t J \I − s ] × [0, t I − s ], S 2 ~t = [0, t J \I − s ] × [ 1 2 t I − s , t I − s ]. Therefore, |T 3 | is bounded by 2 X j=0 X • ~s∈S j ~t ˆ ψ s 1 ,s 2 k t J \I , k t I ˆτ r1 ~t J \I −s 1 −s ~k t J \I ˆ τ r2 ~t I −s 2 −s ~k t I − ˆ τ r1 ~t J \I −s ~k t J \I ˆ τ r2 ~t I −s ~k t I . 2.60 The terms with j = 1, 2 in 2.60 can be estimated as in the bound 2.57 on T 1 , after using the triangle inequality and bounding the r i -point functions by Ot r i −2 . For the j = 0 term of 2.60, we write ˆ τ r1 ~t J \I −s 1 −s ~k t J \I = ˆ τ r1 ~t J \I −s ~k t J \I + ˆ τ r1 ~t J \I −s 1 −s ~k t J \I − ˆ τ r1 ~t J \I −s ~k t J \I , 2.61 ˆ τ r2 ~t I −s 2 −s ~k t I = ˆ τ r2 ~t I −s ~k t I + ˆ τ r2 ~t I −s 2 −s ~k t I − ˆ τ r2 ~t I −s ~k t I . 2.62 We expand the product of 2.61 and 2.62. This gives four terms, one of which is cancelled by ˆ τ r1 ~t J \I −s ~k t J \I ˆ τ r2 ~t I −s ~k t I in 2.60. Three terms remain, each of which contains at least one factor from the second terms in 2.61–2.62. In each term we retain one such factor and bound the other factor by a power of t, and we estimate ˆ ψ using 2.36. This gives a bound for the j = 0 contribution to 2.60 equal to the sum of X • s 1 ,s 2 ∈S ~n Ot r 2 −2 b ǫ s 1 ,s 2 ˆτ r1 ~t J \I −s 1 −s ~k t J \I − ˆ τ r1 ~t J \I −s ~k t J \I 2.63 819 plus a similar term with J \ I and r 1 replaced by I and r 2 , respectively. By the induction hypothesis, the difference of r 1 -point functions in 2.63 is equal to A ǫ A ǫ 2 V ǫ t r 1 −2 f ~t J \I − s 1 − s t − f ~t J \I − s t + Ot r 1 −2 t + 1 −κ 2.64 with f ~t = ˆ M r1−1 ~t ~k J \I . Using 1.17, the difference in 2.64 can be seen to be at most Os 1 t −1 . Therefore, 2.63 is bounded above, using 2.54, by X • s 1 ,s 2 ∈S ~t Os 1 t r −4 + Ot r −3 t + 1 −κ b ǫ s 1 ,s 2 + b ǫ s 2 ,s 1 ≤ Oǫt r −3 t + 1 −κ . 2.65 This establishes 2.59. Summarizing 2.57–2.59 yields 2.46. This completes the proof of Theorem 2.1i assuming Proposition 2.2i. Proof of Theorem 2.1ii assuming Proposition 2.2. The proof of Theorem 2.1ii is similar, now us- ing Proposition 2.2ii instead of Proposition 2.2i and Lemma 2.3ii instead of Lemma 2.3i. For d ≤ 4, we will prove that for there are positive constants L = L d and such that, for λ T and µ as in Theorem 1.1ii, L 1 ≥ L , with L T defined as in 1.7, and δ ∈ 0, 1 ∧ ∆ ∧ α, we have ˆ τ r ~t ~k p σ 2 T T = 2 − ǫT r −2 ˆ M r−1 ~tT ~k + OT −µ∧δ r ≥ 3 2.66 uniformly in T ≥ ¯t, in ~t such that max r −1 i=1 t i ≤ T log T , and in ~k ∈ R r−1d with P r −1 i=1 |k i | 2 bounded, and uniformly in ǫ 0. We again prove 2.66 by induction in r, with the initial case of r = 2 given by Theorem 2.1ii. This part is a straightforward adaptation of the argument in 2.44, and is omitted. We now advance the induction hypothesis. By 2.30 and 2.39, ˆ τ r ~t ~k = t −2ǫ X • s =0 ˆ τ 2 s k X ∅6=I⊂J 1 t J \I −s X • s 1 =2 ǫ t I −s X • s 2 =2 ǫ ˆ ψ s 1 ,s 2 k J \I , k I ˆ τ r1 ~t J \I −s 1 −s ~k J \I ˆ τ r2 ~t I −s 2 −s ~k I + OT r −2−κ , 2.67 where, since µ ∈ 0, α − δ due to Theorem 1.1ii, and since κ ∈ 0, α is arbitrary due to Proposi- tion 2.2ii, we may assume κ ≥ µ without loss of generality. Below, we will frequently use X ~x I τ |I|+1 ~t I ~x I ≤ O 1 + ¯t I |I|−1 , uniformly in ǫ. 2.68 This is an easy consequence of the already-known results for the 2-point function and certain dia- grammatic constructions introduced in Section 5.1. We will prove 2.68 in the beginning of Sec- tion 5.3.2. 820 By Proposition 2.2ii and Lemma 2.3ii and using ˆ β T = β 1 T −µ and 2.68, we can bound t −2ǫ X • s =0 ˆ τ 2 s k X ∅6=I⊂J 1 t J \I −s X • s 1 =2 ǫ t I −s X • s 2 =2 ǫ 1 {s 1 ,s 2 6=2ǫ,2ǫ} ˆ ψ s 1 ,s 2 k J \I , k I ˆ τ r1 ~t J \I −s 1 −s ~k J \I ˆ τ r2 ~t I −s 2 −s ~k I 2.69 ≤ C ψ ¯t + 1 r −3 t −2ǫ X • s =0 T log T X • s 1 ,s 2 =2 ǫ s 1 ∨s 2 2ǫ δ s 1 ,s 2 + β T b ǫ s 1 ,s 2 + b ǫ s 2 ,s 1 ≤ OT r −2−κ . Fix ~k with P r −1 i=1 |k i | 2 bounded. To abbreviate the notation, we now write ~k T = ~k p σ 2 T T . By 2.28 and 1.2, ˆ ψ 2 ǫ,2ǫ ~k T J \I ,~k T I − ˆ ψ 2 ǫ,2ǫ 0, 0 = O ǫ|k| 2 T −1 , 2.70 and, by 2.28 and the fact that λ T = 1 + OT −µ , ˆ ψ 2 ǫ,2ǫ 0, 0 = λ T ǫ2 − ǫ = ǫ2 − ǫ + OǫT −µ . 2.71 As a result, we obtain that ˆ τ r ~t ~k T = ǫ2 − ǫ t −2ǫ X • s =0 ˆ τ 2 s k T X ∅6=I⊂J 1 ˆ τ r1 ~t J \I −2ǫ−s ~k T J \I ˆ τ r2 ~t I −2ǫ−s ~k T I + OT r −2−µ + O|k| 2 T r −3 . 2.72 The remainder of the argument can now be completed as in 2.47–2.49, using the induction hypothesis in 2.66 instead of the one in 2.43.

2.5 The continuum limit

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52