~x getdoc6cef. 1092KB Jun 04 2011 12:04:29 AM

5.3.2 Proof of the bound on A

N ~x J We prove 5.2 for d 4 and 5.4 for d ≤ 4 simultaneously, using Lemmas 5.3 and 5.7–5.8. As in Section 2.4, we will frequently use 2.68: X ~x I τ ~t I ~x I ≤ O 1 + ¯t I |I|−1 . 5.79 where we recall max i ∈I t i ≤ T log T for d ≤ 4. For simplicity, let I = {1, . . . , i}. Then, 5.79 is an easy consequence of Lemma 5.3: X ~x I τ ~t I ~x I ≤ X ~x Ii ,x i τ ~t Ii ~x I i ; ℓx i , t i ≤ · · · ≤ X x 1 ,...,x i τ t 1 x 1 ; ℓx 2 , t 2 , · · · , ℓx i , t i . 5.80 First we prove 5.2, for which d 4, for N ≥ 1. By Lemma 5.8, we have A N ~x J ≡ A N

o, ~x

J ; {o} ≤ X I 6=∅,J X z P N z τ~x I − z + P N z; ℓ~x I τ~x J \I − z. 5.81 Note that the number of lines contained in each diagram for P N z at any fixed time between 0 and t z is bounded, say, by L , due to its construction. Therefore, by Lemmas 5.3 and 5.7, we obtain X z,x 1 P N z, s; ℓx 1 , t 1 ≤ L ǫ 2 O β N 1 + s d 2 1 + s ∧ t 1 ≤ L ǫ 2 O β N 1 + s d−22 , 5.82 and further that X z,x 1 ,x 2 P N z, s; ℓx 1 , t 1 , ℓx 2 , t 2 ≤ L L + 1 ǫ 2 O β N 1 + s d−22 1 + s ∨ t 1 ∧ t 2 , 5.83 where we note that 1 + s ∨ t 1 ∧ t 2 = 1 + min{max{s, t 1 }, t 2 }, so that the order of operations is naturally first ‘ ∨’, followed by ‘∧’ and then finally ‘+’. More generally, by denoting the second-largest element of {s,~t I } by ¯s ~t I , we have X z, ~x I P N z, s; ℓ~x I ,~t I ≤ L + |I| − 1 L − 1 ǫ 2 O β N 1 + s d−22 1 + ¯ s ~t I |I|−1 , 5.84 where the combinatorial factor L +|I|−1 L −1 is independent of β and N . Substituting this and 5.60 into 5.81 and using 5.79, we obtain that, since d − 22 1, X ~x J A N ~t J ~x J ≤ ǫOβ N X I 6=∅,J ‚ ǫ X • s ≤t J 1 1 + s d 2 O ¯t I − s |I|−1 O ¯t J \I − s |J\I|−1 + ǫ X • s ≤t J \I O1 + ¯ s ~t I |I|−1 1 + s d−22 O ¯t J \I − s |J\I|−1 Œ ≤ ǫOβ N O 1 + ¯t |J|−2 , 5.85 855 where ¯t = ¯t J . This proves 5.2 for N ≥ 1. To prove 5.4, for which d ≤ 4, for N ≥ 1, we simply replace Oβ N in 5.84 by O β T O ˆ β T N −1 using Lemma 5.7ii instead of Lemma 5.7i. Then, we use the factor β T to control the sums over s ∈ ǫZ + in 5.85, as in 5.28. Since t J \I ≤ T log T , β T ≡ β 1 T −bd and ˆ β T ≡ β 1 T −α with α bd − 4 −d 2 , we have β T ǫ X • s ≤t J \I 1 + s −d−22 ≤ Oβ T 1 + t J \I 4−d2 log1 + t J \I δ d,4 ≤ O ˆ β T . 5.86 This completes the proof of 5.4 for N ≥ 1. Next we consider the case of N = 0. Similarly to the above computation, the contribution from the latter sum in 5.68 over z 6= v = o in the current setting equals ǫOβ1 + ¯t r −3 for d 4 and ǫO ˆ β T 1+¯t r −3 for d ≤ 4. It remains to estimate the contribution from P{o −→ ~x I }◦{o −→ ~x J \I } in 5.68. If ǫ is large e.g., ǫ = 1, then we simply use the BK inequality to obtain P {o −→ ~x I } ◦ {o −→ ~x J \I } ≤ τ~x I τ~x J \I . 5.87 Therefore, by 5.79, we have X ~x J A ~t J ~x J ≤ O 1 + ¯t r −3 . 5.88 If ǫ ≪ 1, then we should be more careful. Since {o −→ ~x I } and {o −→ ~x J \I } occur bond-disjointly, and since there is only one temporal bond growing out of o, there must be a nonempty subset I ′ of I or J \ I and a spatial bond b with b = o such that {b −→ ~x I ′ } ◦ {o −→ ~x J \I ′ } occurs. Then, by the BK inequality and 5.79, we obtain X ~x J P {o −→ ~x I } ◦ {o −→ ~x J \I } ≤ X ~x J X ∅6=I ′ J X b=o, · spatial P {b −→ ~x I ′ } ◦ {o −→ ~x J \I ′ } ≤ X ~x J X ∅6=I ′ J λǫD ⋆ τ~x I ′ τ~x J \I ′ ≤ ǫ O 1 + ¯t I ′ |I ′ |−1 1 + ¯t J \I ′ |J\I ′ |−1 ≤ ǫ O 1 + ¯t |J|−2 . 5.89 This completes the proof of 5.2 for d 4 and 5.4 for d ≤ 4. 6 Bound on φy 1 , y 2 ± To prove the bound on ˆ ψ s 1 ,s 2 k 1 , k 2 in Proposition 2.2, we first recall 2.24 and 4.58: ψy 1 , y 2 = X v p ǫ v Cy 1 − v, y 2 − v, Cy 1 , y 2 = φy 1 , y 2 + + φy 2 , y 1 + − φy 2 , y 1 − , 6.1 856 hence ˆ ψ s 1 ,s 2 k 1 , k 2 = ˆ p ǫ k 1 + k 2 ˆ φ s 1 −ǫ,s 2 −ǫ k 1 , k 2 + + ˆ φ s 2 −ǫ,s 1 −ǫ k 2 , k 1 + − ˆ φ s 2 −ǫ,s 1 −ǫ k 2 , k 1 − . 6.2 Therefore, to show the bound on ˆ ψ s 1 ,s 2 k 1 , k 2 , it suffices to investigate φy

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52