b; z p y

Proof of Lemma 6.7 for N 1 ≥ 1. First we recall that, by 6.3 and 5.40, B N1 δ b N +1 , y 1 ; ˜ C N ≤ X b= · ,y 1 P N1−1 b N +1 , b; ˜ C N p b , 6.87 where, by 5.39, P N1−1 b N +1 , b; ˜ C N    = P b N +1 , b; ˜ C N N 1 = 1, ≤ X η X z X e P b N +1 , e; ˜ C N , ℓ η z p e P N1−2

e, b; z N

1 ≥ 2. 6.88 Then, by following the argument between 6.72 and 6.82 and using versions of 6.57 and 5.59, we obtain that, for N 1 ≥ 2, X b N +1 p b N +1 M N +1 b N +1 1 V t y1 −ǫ b N ,y 2 ∩ {~x ∈˜C N } P b N +1 , e; ˜ C N , ℓ η z ≤ X b N +1 X η ′ X c P N b N +1 ; ℓ η ′

c, V

t y 1 −ǫ y 2 , ℓ~x p b N +1 P b N +1 , e; c, ℓ η z ≤ P N +1 e; V t y 1 −ǫ y 2 , ℓ~x , ℓ η z = R N +1

e, y

2 ; ℓ~x , ℓ η z . 6.89 For N 1 = 1, we simply ignore ℓ η z and replace e by b, which immediately yields 6.45. For N 1 ≥ 2, by a version of 5.59, we obtain LHS of 6.45 ≤ X b= · ,y 1 X η X z X e R N +1

e, y

2 ; ℓ~x , ℓ η z p e P N1−2

e, b; z p

b ≤ X b= · ,y 1 R N +N1

b, y

2 ; ℓ~x p b , 6.90 as required. The inequality 6.46 for N 1 ≥ 1 can be proved similarly. This completes the proof of Lemma 6.7. 7 Bound on a ~x J From now on, we assume r ≡ |J| + 1 ≥ 3. The Fourier transform of the convolution equation 2.25 is ˆ ζ ~t J ~k J = ˆ A ~t J ~k J + t X • s= ǫ Û τ s −ǫ ∗ p ǫ k ˆ a ~t J −s ~k J , 7.1 where t = t J ≡ min j ∈J t j and k = P j ∈J k j . We have already shown in Proposition 5.1 and 5.79 that ˆA ~t J ~k J ≤ kA ~t J k 1 ≤ ǫO 1 + ¯t r −3 , Û τ s −ǫ ∗ p ǫ k ≤ kτ s −ǫ k 1 kp ǫ k 1 ≤ O1, 7.2 where ¯t ≡ ¯t J is the second-largest element of ~t J . To complete the proof of 2.37, we investigate the sum P • ǫ≤s≤t |ˆa ~t J −s ~k J |. 871 First we recall 2.26 and 4.55 to see that a N ~x J = a N ~x J ; 1 + X ∅6=IJ a N ~x J \I , ~x I ; 2 + X y 1 a N y 1 , ~x I ; 3 + a N y 1 , ~x I ; 4 τ~x J \I − y 1 . 7.3 Let ∆ t =    1 d 6, log1 + t d = 6, 1 + t 1 ∧ 6 −d 2 d 6. 7.4 The main estimates on the error terms are the following bounds: Proposition 7.1 Bounds on the error terms. Let d 4 and λ = λ ǫ c . For r ≡ |J| + 1 ≥ 3 and N ≥ 0, X ~x J a N ~t J ~x J ; 1 ≤ δ N ,0 X j ∈J δ t j ,0 + ǫ 2 O β 1 ∨N 1 + t O 1 + ¯t r −3 , 7.5 X ~x J a N ~t J \I ,~t I ~x J \I , ~x I ; 2 ≤ ǫ O β N 1 + β∆ ¯t 1 + t O 1 + ¯t r −3 , 7.6 X ~x J X y 1 a N y 1 , ~x I ; 3 τ~x J \I − y 1 ≤ ǫ O β N +1 1 + t ∆ ¯t 1 + ¯t r −3 , 7.7 X ~x J X y 1 a N y 1 , ~x I ; 4 τ~x J \I − y 1 ≤ ǫ O β 1 ∨N 1 + t ∆ ¯t 1 + ¯t r −3 . 7.8 For d ≤ 4 and λ = λ T , the same bounds with β replaced by ˆ β T ≡ β 1 T −α hold. The bounds 7.5–7.8 are proved in Sections 7.1–7.4, respectively. Proof of 2.37 and 2.39 assuming Proposition 7.1. By 7.3 and 7.5–7.8, we have that, for d 4, |ˆa ~t J ~k J | ≤ X N ≥0 X ~x J a N ~t J ~x J ≤ O 1 + ¯t r −3 X j ∈J δ t j ,0 + ǫ 1 + β∆ ¯t 1 + t , 7.9 hence, for any κ 1 ∧ d −4 2 , t X • s= ǫ |ˆa ~t J −s ~k J | ≤ O 1 + ¯t r −3 1 + ǫ t X • s= ǫ 1 + β∆ ¯t 1 + t − s ≤ O 1 + ¯t r −3 log1 + ¯t 1 + β∆ ¯t ≤ O 1 + ¯t r −2−κ , 7.10 872 which implies 2.37, due to 7.1–7.2. For d ≤ 4, β in 7.10 is replaced by ˆ β T , and ∆ ¯t = 1 + ¯t. Therefore, for any κ α, t X • s= ǫ |ˆa ~t J −s ~k J | ≤ O 1 + ¯t r −2 log1 + ¯t ˆ β T ≤ OT r −2−κ , as T ↑ ∞. 7.11 This completes the proof of 2.39.

7.1 Proof of 7.5

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52