y y ~x getdoc6cef. 1092KB Jun 04 2011 12:04:29 AM

a 1 y 1 , ~x I ; 3 + : 1 y o 2 b 1 b a 1 y 1 , ~x I ; 3 − : 1 y o 1 b 2 b + 1 y o 1 b 2 b Figure 7: Schematic representations of a 1 y 1 , ~x I ; 3 ± . The random variable B δ b N +1 , y 1 ; Cb N in 4.51 for N = 1 becomes B b 2 , y 1 ; Cb 1 in bold dashed lines. The expansion for ˜ B N y 1 , ~x I is completed by using 4.25, 4.30 and 4.46 as follows. For convenience, we let ˜ M 1 b 1 X = ˜ M b 1 o ,b 1 ; {o} X . 4.47 Moreover, for a measurable function X v that depends explicitly on v ∈ Λ, we abuse notation to write ˜ M N +1 b N +1 X b N = X b N p b N M N b N ˜ M b N +1 b N ,b N +1 ;˜ C N −1 X b N N ≥ 1, 4.48 where b N in the left-hand side is a dummy variable that has already been summed over, as in the right-hand side. Using this notation, as well as the abbreviations C N = Cb N , ˜ C e N = ˜ C e b N , C + = {b N } and C − = ˜ C N −1 , 4.49 we define, for N ≥ 0, φ N y 1 , y 2 ± = X b N +1 ,e b N +1 6=e p b N +1 p e ˜ M N +1 b N +1 1 {H t y1 b N ,e; C ± in ˜ C e N } B δ b N +1 , y 1 ; C N B δ

e, y

2 ; ˜ C e N , 4.50 and, for ℓ = 3, 4, a N y 1 , ~x I ; ℓ = a N y 1 , ~x I ; ℓ + − 1 { j I 1} a N y 1 , ~x I ; ℓ − , 4.51 where a N y 1 , ~x I ; 3 ± = X b N +1 p b N +1 ˜ M N +1 b N +1 1 H t y1 b N , ~x I ; C ± B δ b N +1 , y 1 ; C N , 4.52 a N y 1 , ~x I ; 4 ± = − X b N +1 ,e b N +1 6=e p b N +1 p e ˜ M N +1 b N +1 1 {H t y1 b N ,e; C ± in ˜ C e N } B δ b N +1 , y 1 ; C N Ae, ~x I ; ˜ C e N . 4.53 837 φ 1 y 1 , y 2 + : 2 y e o 1 y b 1 b 2 φ 1 y 1 , y 2 − : 2 y e o 1 b 1 y b 2 + 2 y e o 1 b 1 y b 2 a 1 y 1 , ~x I ; 4 + : 1 y e o b 1 b 2 a 1 y 1 , ~x I ; 4 − : 1 y e o b 2 b 1 + e o 1 b 1 y b 2 Figure 8: Schematic representations of φ 1 y 1 , y 2 ± and a 1 y 1 , ~x I ; 4 ± . The random variables B δ b N +1 , y 1 ; Cb N , B δ

e, y

2 ; ˜ C e b N and Ae, ~x I ; ˜ C e b N in 4.50–4.53 become B b 2 , y 1 ; Cb 1 , B e, y 2 ; ˜ C e b 1 and A e, ~x I ; ˜ C e b 1 , respectively depicted in bold dashed lines, when N = 1. These functions correspond to the second term in the left-hand side of 4.46 and the first and second terms in the right-hand side of 4.46, respectively, when 4.46 is substituted into 4.25. We note that the functions 4.51 depend on I via the indicator 1 { j I 1} , which is due to the fact that both terms in the right-hand side of 4.30 contribute to the case of j I 1, while for the case of j I = 1, the contribution is only from the first term that has been treated as the case of A = {b N }. Now we arrive at ˜ B N y 1 , ~x I − a N y 1 , ~x I ; 3 = X y 2 φ N y 1 , y 2 + − 1 { j I 1} φ N y 1 , y 2 − τ~x I − y 2 + a N y 1 , ~x I ; 4, 4.54 where a N y 1 , ~x I ; ℓ for ℓ = 3, 4 turn out to be error terms. This extracts the factor τ~x I − y 2 from ˜ B N

y, ~x

I . 838

4.3 Summary of the expansion for A

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52