Summary of the expansion for A Proof of the identity 2.35 b;{o} e;{o} in ˜C

4.3 Summary of the expansion for A

~x J Recall 4.28 and 4.54, and define, for N ≥ 0, a N ~x J \I , ~x I = a N ~x J \I , ~x I ; 2 + X y 1 a N y 1 , ~x I ; 3 + a N y 1 , ~x I ; 4 τ~x J \I − y 1 , 4.55 let a N ~x J be given by 2.26 and define a ~x J = ∞ X N =0 −1 N a N ~x J , φy 1 , y 2 ± = ∞ X N =0 −1 N φ N y 1 , y 2 ± . 4.56 Now, we can summarize the expansion in the previous two subsections as follows: Proposition 4.5 Expansion for A ~x J . For any λ ≥ 0, J 6= ∅ and ~x J ∈ Λ |J| , A ~x J = a ~x J + X ∅6=IJ 1 X y 1 ,y 2 Cy 1 , y 2 τ~x J \I − y 1 τ~x I − y 2 , 4.57 where Cy 1 , y 2 = φy 1 , y 2 + + φy 2 , y 1 + − φy 2 , y 1 − . 4.58 Proof. We substitute 4.54 into 4.28. Note that, by 4.7, j I 1 precisely when 1 ∈ I. Thus, also taking notice of the difference in J \ I, which contains 1 in 2.18, but may not in 4.28, we split the sum over I arising from in 4.28 as X y 1 ,y 2 X ∅6=I⊂J 1 φy 1 , y 2 + τ~x J \I − y 1 τ~x I − y 2 + X 1 ∈IJ φy 1 , y 2 + − φy 1 , y 2 − τ~x J \I − y 1 τ~x I − y 2 = X y 1 ,y 2 X ∅6=I⊂J 1 φy 1 , y 2 + τ~x J \I − y 1 τ~x I − y 2 + X y ′ 1 ,y ′ 2 X ∅6=I ′ ⊂J 1 φy ′ 2 , y ′ 1 + − φy ′ 2 , y ′ 1 + τ~x J \I ′ − y ′ 1 τ~x I ′ − y ′ 2 = X y 1 ,y 2 X ∅6=I⊂J 1 φy 1 , y 2 + + φy 2 , y 1 + − φy 2 , y 1 − τ~x J \I − y 1 τ~x I − y 2 , 4.59 where y ′ 1 , y ′ 2 and I ′ in the middle expression correspond to y ′ 1 = y 2 , y ′ 2 = y 1 and I ′ = J \ I on the left hand side of 4.59. Therefore, we arrive at 4.57–4.58. This completes the derivation of the lace expansion for the r-point function.

4.4 Proof of the identity 2.35

Note that, by 2.24, 2.35 is equivalent to C ǫ,ǫ y 1 , y 2 ≡ C y 1 , ǫ, y 2 , ǫ = p ǫ y 1 p ǫ y 2 1 − δ y 1 , y 2 . 4.60 839 By 4.58, 4.60 follows when we show that φ ǫ,ǫ y 1 , y 2 ± = p ǫ y 1 p ǫ y 2 1 − δ y 1 , y 2 . 4.61 According to 4.50, φ N ǫ,ǫ y 1 , y 2 ± = 0 unless N = 0. Also, by 4.27, we see that φ ǫ,ǫ y 1 , y 2 + = φ ǫ,ǫ y 1 , y 2 − . Therefore, since p ǫ y 1 p ǫ y 2 1 − δ y 1 , y 2 is symmetric in y 1 , y 2 , it suffices to show that φ ǫ,ǫ y 1 , y 2 + ≡ X b,e b6=e p b p e ˜ E b h 1 E ′

o,b;{o}

1 {H ǫ

o,e;{o} in ˜C

e o} B δ

b, y

1 , ǫ; Co B δ

e, y

2 , ǫ; ˜ C e o i = p ǫ y 1 p ǫ y 2 1 − δ y 1 , y 2 . 4.62 However, this immediately follows from the fact that the product of the two indicators in ˜ E b is 1 {b=e=o} cf., 3.4 and 4.35 and that, by 4.21, B δ

b, y

1 , ǫ; Co = δ

b, y

1 , ǫ and B δ

e, y

2 , ǫ; ˜ C e o = δ

e, y

2 , ǫ . This completes the proof of 2.35. 5 Bounds on Bx and A ~x J In this section, we prove the following proposition, in which we denote the second-largest element of {t j } j ∈J by ¯t = ¯t J : Proposition 5.1 Bounds on the coefficients of the linear expansion. i Let d 4 and L ≫ 1. For λ ≤ λ ǫ c , N ≥ 0, t ∈ ǫN, ~t J ∈ ǫZ + |J| and q = 0, 2, X x |x| q B N t x ≤ 1 − ǫδ q,0 + λǫσ q δ t, ǫ δ N ,0 + ǫ 2 O β 1 ∨N σ q 1 + t d−q2 , 5.1 X ~x J A N ~t J ~x J ≤ ǫOβ N O 1 + ¯t r −3 , 5.2 where the constant in the O β term is independent of ǫ, L, N and t or ¯t in 5.2. ii Let d ≤ 4 with α ≡ bd − 4 −d 2 0, ˆ β T = β 1 T −α with α ∈ 0, α, and L 1 ≫ 1. For λ ≤ λ ǫ c , N ≥ 0, t ∈ ǫN ∩ [0, T log T ], ~t J ∈ ǫZ + |J| with max j ∈J t j ≤ T log T and q = 0, 2, X x |x| q B N t x ≤ 1 − ǫδ q,0 + λǫσ q T δ t, ǫ δ N ,0 + ǫ 2 O β T O ˆ β T ∨N−1 σ q T 1 + t d−q2 , 5.3 X ~x J A N ~t J ~x J ≤ ǫO ˆ β T N O 1 + ¯t r −3 , 5.4 where the constants in the O β T and O ˆ β T terms are independent of ǫ, L 1 , T, N and t or ¯t in 5.4. In Section 5.1, we define several constructions that will be used later to define bounding diagrams for Bx , A ~x , Cy 1 , y 2 and a ~x . There, we also summarize effects of these constructions. Then, we prove the above bounds on Bx in Section 5.2, and the bounds on A ~x J in Section 5.3. Throughout Sections 5–7, we shall frequently assume that λ ≤ 2, which follows from 2.5 for d 4 and L ≫ 1, and from the restriction on λ T in Theorem 1.1 for d ≤ 4 and L 1 ≫ 1. 840 a v x u + v u x b u=v x + u=v x Figure 9: Schematic representation of Lu, v ; x for a u 6= v and b u = v. Here, the tilted arrows denote spatial bonds, while the short double line segments at u in Case a denote unspecified bonds that could be spatial or temporal.

5.1 Constructions: I

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52