4.3 Summary of the expansion for A
~x
J
Recall 4.28 and 4.54, and define, for N ≥ 0,
a
N
~x
J \I
, ~x
I
= a
N
~x
J \I
, ~x
I
; 2 + X
y
1
a
N
y
1
, ~x
I
; 3 + a
N
y
1
, ~x
I
; 4 τ~x
J \I
− y
1
, 4.55
let a
N
~x
J
be given by 2.26 and define a
~x
J
=
∞
X
N =0
−1
N
a
N
~x
J
, φy
1
, y
2 ±
=
∞
X
N =0
−1
N
φ
N
y
1
, y
2 ±
. 4.56
Now, we can summarize the expansion in the previous two subsections as follows:
Proposition 4.5 Expansion for A ~x
J
. For any λ ≥ 0, J 6= ∅ and ~x
J
∈ Λ
|J|
, A
~x
J
= a ~x
J
+ X
∅6=IJ
1
X
y
1
,y
2
Cy
1
, y
2
τ~x
J \I
− y
1
τ~x
I
− y
2
, 4.57
where
Cy
1
, y
2
= φy
1
, y
2
+
+ φy
2
, y
1
+
− φy
2
, y
1
−
. 4.58
Proof. We substitute 4.54 into 4.28. Note that, by 4.7, j
I
1 precisely when 1 ∈ I. Thus, also taking notice of the difference in J
\ I, which contains 1 in 2.18, but may not in 4.28, we split the sum over I arising from in 4.28 as
X
y
1
,y
2
X
∅6=I⊂J
1
φy
1
, y
2
+
τ~x
J \I
− y
1
τ~x
I
− y
2
+ X
1 ∈IJ
φy
1
, y
2
+
− φy
1
, y
2
−
τ~x
J \I
− y
1
τ~x
I
− y
2
= X
y
1
,y
2
X
∅6=I⊂J
1
φy
1
, y
2
+
τ~x
J \I
− y
1
τ~x
I
− y
2
+ X
y
′ 1
,y
′ 2
X
∅6=I
′
⊂J
1
φy
′ 2
, y
′ 1
+
− φy
′ 2
, y
′ 1
+
τ~x
J \I
′
− y
′ 1
τ~x
I
′
− y
′ 2
= X
y
1
,y
2
X
∅6=I⊂J
1
φy
1
, y
2
+
+
φy
2
, y
1
+
− φy
2
, y
1
−
τ~x
J \I
− y
1
τ~x
I
− y
2
, 4.59
where y
′ 1
, y
′ 2
and I
′
in the middle expression correspond to y
′ 1
= y
2
, y
′ 2
= y
1
and I
′
= J \ I on the left hand side of 4.59. Therefore, we arrive at 4.57–4.58. This completes the derivation of the
lace expansion for the r-point function.
4.4 Proof of the identity 2.35
Note that, by 2.24, 2.35 is equivalent to C
ǫ,ǫ
y
1
, y
2
≡ C y
1
, ǫ, y
2
, ǫ
= p
ǫ
y
1
p
ǫ
y
2
1 − δ
y
1
, y
2
. 4.60
839
By 4.58, 4.60 follows when we show that φ
ǫ,ǫ
y
1
, y
2
±
= p
ǫ
y
1
p
ǫ
y
2
1 − δ
y
1
, y
2
. 4.61
According to 4.50, φ
N
ǫ,ǫ
y
1
, y
2
±
= 0 unless N = 0. Also, by 4.27, we see that φ
ǫ,ǫ
y
1
, y
2
+
= φ
ǫ,ǫ
y
1
, y
2
−
. Therefore, since p
ǫ
y
1
p
ǫ
y
2
1 − δ
y
1
, y
2
is symmetric in y
1
, y
2
, it suffices to show that
φ
ǫ,ǫ
y
1
, y
2
+
≡ X
b,e b6=e
p
b
p
e
˜ E
b
h
1
E
′
o,b;{o}
1
{H
ǫ
o,e;{o} in ˜C
e
o}
B
δ
b, y
1
, ǫ; Co B
δ
e, y
2
, ǫ; ˜
C
e
o
i
= p
ǫ
y
1
p
ǫ
y
2
1 − δ
y
1
, y
2
. 4.62
However, this immediately follows from the fact that the product of the two indicators in ˜
E
b
is
1
{b=e=o}
cf., 3.4 and 4.35 and that, by 4.21, B
δ
b, y
1
,
ǫ; Co = δ
b, y
1
, ǫ
and B
δ
e, y
2
, ǫ; ˜
C
e
o =
δ
e, y
2
, ǫ
. This completes the proof of 2.35.
5 Bounds on Bx and A
~x
J
In this section, we prove the following proposition, in which we denote the second-largest element of
{t
j
}
j ∈J
by ¯t = ¯t
J
:
Proposition 5.1 Bounds on the coefficients of the linear expansion. i Let d
4 and L ≫ 1. For
λ ≤ λ
ǫ
c
, N ≥ 0, t ∈ ǫN, ~t
J
∈ ǫZ
+ |J|
and q = 0, 2, X
x
|x|
q
B
N
t
x ≤ 1 − ǫδ
q,0
+ λǫσ
q
δ
t, ǫ
δ
N ,0
+ ǫ
2
O β
1 ∨N
σ
q
1 + t
d−q2
, 5.1
X
~x
J
A
N
~t
J
~x
J
≤ ǫOβ
N
O 1 + ¯t
r −3
, 5.2
where the constant in the O β term is independent of ǫ, L, N and t or ¯t in 5.2.
ii Let d ≤ 4 with α ≡ bd −
4 −d
2
0, ˆ β
T
= β
1
T
−α
with α ∈ 0, α, and L
1
≫ 1. For λ ≤ λ
ǫ
c
, N ≥ 0,
t ∈ ǫN ∩ [0, T log T ], ~t
J
∈ ǫZ
+ |J|
with max
j ∈J
t
j
≤ T log T and q = 0, 2, X
x
|x|
q
B
N
t
x ≤ 1 − ǫδ
q,0
+ λǫσ
q
T
δ
t, ǫ
δ
N ,0
+ ǫ
2
O β
T
O ˆ β
T
∨N−1
σ
q
T
1 + t
d−q2
, 5.3
X
~x
J
A
N
~t
J
~x
J
≤ ǫO ˆ β
T
N
O 1 + ¯t
r −3
, 5.4
where the constants in the O β
T
and O ˆ β
T
terms are independent of ǫ, L
1
, T, N and t or ¯t in 5.4.
In Section 5.1, we define several constructions that will be used later to define bounding diagrams for Bx , A
~x , Cy
1
, y
2
and a ~x . There, we also summarize effects of these constructions. Then,
we prove the above bounds on Bx in Section 5.2, and the bounds on A ~x
J
in Section 5.3. Throughout Sections 5–7, we shall frequently assume that
λ ≤ 2, which follows from 2.5 for d
4 and L ≫ 1, and from the restriction on λ
T
in Theorem 1.1 for d ≤ 4 and L
1
≫ 1. 840
a
v x
u
+
v u
x
b
u=v x
+
u=v x
Figure 9: Schematic representation of Lu, v ; x for a u 6= v and b u = v. Here, the tilted arrows
denote spatial bonds, while the short double line segments at u in Case a denote unspecified bonds that could be spatial or temporal.
5.1 Constructions: I