Variance Decomposition of Lettuce head Forecast Error Of Beef Tomato

Nilai hasil ramalan dapat dilihat pada Lampiran 21. Hasil ramalan dengan metode pemulusan eksponensial Winter’s untuk satu tahun ke depan pada enam periode pertama nilai aktualnya semua berada pada rentang nilai forecast, sehingga nilai ramalannya akurat. Sedangkan dengan pendekatan kointegrasi pada penelitian ini hanya pada tiga periode pertama saja yang akurat. Metode pemulusan eksponensial Winter’s tersebut lebih sensitif terhadap tren dan pola musiman yang ada pada data lettuce head dari periode Januari 2009 sampai periode Desember 2011. Hasil peramalannya berfluktuatif dan memiliki kecenderungan menurun seiring dengan peningkatan periode ramalan pada penelitian. Hasil ramalan ini hampir sama dengan hasil ramalan untuk komoditas kembang kol yang menghasilkan nilai peramalan yang cenderung semakin menurun karena dipengaruhi data sebelumnya yang dijadikan dasar pada peramalan. Bila dibandingkan dengan hasil peramalan dengan pendekatan kointegrasi pada penelitian ini, peramalan dengan metode pemulusan eksponensial Winter’s lebih sensitif terhadap tren dan pola musiman yang terdapat pada data lettuce head.

4. Variance Decomposition of Lettuce head

Gambar 9. Variance Decomposition of Lettuce head Gambar 9 variance decomposition di atas dapat dilihat bahwa permintaan komoditas lettuce head sangat dipengaruhi oleh komoditas lettuce head itu sendiri dan kembang kol. Pada periode pertama lettuce head mempengaruhi komoditas lettuce head itu sendiri sebesar 48,7 persen lebih kecil dari pengaruh yang diberikan oleh kembang kol terhadap lettuce head sebesar 51, 2 persen. Periode berikutnya pengaruh lettuce head pada lettuce head itu sendiri mulai melemah terlihat pada periode ke 3 hingga mencapai 44,3 persen dan mulai stabil pada periode ke 9 dengan nilai 39,8 persen. Pengaruh dari komoditas kembang kol semakin menguat terlihat dari periode ke 3 dengan nilai sebesar 55,4 persen sampai dengan periode ke 50 dengan nilai sebesar 57,5 persen. Sedangkan pengaruh dari tomat beef menguat terlihat dari periode ke 3 dengan nilai sebesar 0.3 persen sampai dengan periode ke 50 nilainya sebesar 2,8 persen. Hal ini mengindikasikan bahwa variabilitas permintaan komoditas lettuce head sangat dipengaruhi oleh permintaan kembang kol dan permintaan lettuce head itu sendiri serta dipengaruhi oleh permintaan komoditas tomat beef baik dalam jangka waktu yang panjang maupun jangka waktu yang pendek.

5. Forecast Error Of Beef Tomato

Variabilitas data ramalan dapat diukur dengan peramalan kesalahan standar atau forecast standar error ditambah denagn nilai prediksi dari garis persamaan regresi. Persamaan regresi beda kala yang diperoleh dari pemodelan VECM adalah sebagai berikut : TR = 681 + 0,988 LAGTR + 0,150 LH - 0,177 LAGLH + 0,084 KKOL - 0,413 LAGKOL Hasil dari persamaan regresi tersebut dapat mengetahui nilai prediksi permintaan komoditas tomat beef. Setelah memperoleh persamaan regresinya, dapat menghitung nilai peramalannya. Tabel 11 di bawah ini merupakan hasil peramalan dari komoditas tomat beef selama satu tahun ke depan mulai dari periode ke 31 Juli 2011 sampai dengan periode ke 42 Juni 2012 dengan satuan kilogram untuk setiap nilainya. Tabel 11. Hasil Peramalan Tomat Beef Periode Forecast SE Nilai Persamaan Nilai Forecast Nilai Aktual Keakuratan 31 ±342 3976 3634 4318 2129 tidak akurat 32 ±451 4273 3822 4724 1253 tidak akurat 33 ±554 4528 3974 5082 2426 tidak akurat 34 ±688 4759 4071 5447 1621 tidak akurat 35 ±795 4979 4184 5774 519 tidak akurat 36 ±893 5179 4286 6072 530 tidak akurat 37 ±992 5355 4363 6347 38 ±1067 5501 4434 6568 39 ±1124 5615 4491 6739 40 ±1177 5695 4518 6872 41 ±1218 5742 4524 6960 42 ±1251 5757 4506 7008 Tabel 11 hasil peramalan di atas, dapat dilihat dari hasil nilai persamaan atau nilai prediksi sementara dari variabel tomat beef mengalami peningkatan di setiap periodenya. Nilai ramalan cenderung terus meningkat sampai dengan periode ke 42 Juni 2012. Nilai aktual selama enam periode pertama yaitu periode ke 31 sampai dengan periode ke 36 nilainya tidak berda pada rentang nilai forecast. Hal ini menunjukkan bahwa hitungan ramalan yang telah dilakukan mengasilkan nilai ramalan yang kurang akurat. Nilai aktual yang tidak berada pada rentang nilai forecast pada periode tersebut karena adanya faktor penyebab yang tidak terduga yaitu tanaman tomat beef yang dibudidayakan dalam green house terserang virus gemini. Sehingga perusahaan melakukan pengurangan dan menghentikan sementara permintaan terhadap komoditas tomat beef karena barang yang tidak ada dan kurang mencukupi permintaan. Permasalahan lain yang menyebabkan permintaan menurun yaitu disebabkan harga jual perusahaan yang kurang kompetitif, kebutuhan komoditas yang menggantungkan dari hasil produksi green house, dan permintaan dari customer retail dikurangi dan lebih mengutamakan pemenuhan permintaan customer process. Untuk peramalan enam periode berikutnya yaitu dari periode ke 37 sampai dengan periode ke 42 perusahaan dapat menetapkan target permintaan terhadap penjualan komoditas tomat beef tersebut pada rentang nilai forecast. Untuk melihat lebih jelas perbandingan nilai aktual dengan nilai hasil peramalan dapat melihat Gambar 10. Gambar 10. Nilai Aktual dan Nilai Peramalan Tomat beef Seperti dijelaskan sebelumnya untuk komoditas kembang kol dan lettuce head, penelitian ini juga melakukan analisis peramalan dengan teknik dan metode peramalan lain untuk membandingkan hasil ramalan yang didapatkan pada komoditas tomat beef. Hasil peramalan dengan metode pemulusan eksponensial Winter’s menghasilkan nilai kesalahan yang lebih kecil dibandingkan dengan metode peramalan analisis tren dan time series decomposition. Nilai hasil ramalan dapat dilihat pada Lampiran 22. Hasil ramalan dengan metode pemulusan eksponensial Winter’s untuk satu tahun ke depan pada enam periode pertama nilai aktualnya semua berada pada rentang nilai forecast, sehingga nilai ramalannya akurat. Sedangkan dengan pendekatan kointegrasi pada penelitian ini nilai aktualnya semua tidak berada pada rentang nilai forecast sehingga nilai ramalannya tidak akurat. Metode pemulusan eksponensial Winter’s tersebut lebih sensitif terhadap tren dan pola musiman yang ada pada data tomat beef dari periode Januari 2009 sampai periode Desember 2011. Hasil peramalannya berfluktuatif dan memiliki kecenderungan menurun seiring dengan peningkatan periode ramalan pada penelitian. Hasil ramalan ini hampir sama dengan hasil ramalan untuk komoditas kembang kol dan lettuce head yang menghasilkan nilai peramalan yang cenderung semakin menurun karena dipengaruhi data sebelumnya yang dijadikan dasar pada peramalan ini. Bila dibandingkan dengan hasil peramalan dengan pendekatan kointegrasi pada penelitian ini, peramalan dengan metode pemulusan eksponensial Winter’s lebih sensitif terhadap tren dan pola musiman yang terdapat pada data komoditas sayuran tomat beef.

6. Variance Decomposition of Beef Tomato