Saran HASIL DAN PEMBAHASAN

sedangkan mie yang memiliki karakteristik yang sama seperti mie tepung terigu adalah mie dengan kandungan 10 pati walur. Namun, apabila dilihat dilihat dari skor rata-rata kesukaan panelis, secara umum cookies hingga 100 pati walur serta mie hingga substitusi 60 pati walur masih dapat diterima oleh panelis.

5.2 Saran

Berdasarkan hasil penelitian, diketahui bahwa pati walur memiliki kandungan fosforus yang cukup tinggi dan diduga dapat mempengaruhi karakteristik pati walur. Untuk itu perlu dilakukan penelitian lebih lanjut mengenai kandungan fosfat monoester di dalam pati walur tersebut untuk membuktikan asumsi yang dibuat dalam laporan ini. Hasil penelitian menunjukkan bahwa produk cookies dan mie hasil substitusi pati walur menunjukkan warna yang semakin gelap dengan semakin banyaknya kandungan pati walur. Untuk itu perlu dilakukan penelitian lebih lanjut agar dapat memperbaiki karakteristik warna dari produk pangan hasil substitusi pati walur. Apabila ingin mengaplikasikan pati walur dalam pembuatan produk cookies dan mie agar memiliki karakteristik yang sama dengan produk tepung terigu dapat dilakukan dengan mensubstitusi sebanyak 25 pati walur dalam pembuatan cookies dan 10 dalam pembuatan mie. DAFTAR PUSTAKA [AACC ] American Association Cereal Chemist. 1999a. Method 66-50.01 Pasta and noodle cooking quality–firmness . St. Paul, MN, U.S.A: AACC International Approved Methods of Analysis, eleventh ed. [AACC] American Association Cereal Chemist. 1999b. Method 54-50.01, Determination of the water absorption capacity of flours and of physical properties of wheat flour doughs, using the consistograph . St. Paul, MN, U.S.A: AACC International Approved Methods of Analysis, eleventh ed. Adeleke RO, JO Adedeji. 2010. Functional Properties of wheat and sweet potato flour blends. Pakistan Journal of Nutrition 6; 9: 535-538 Almatsier S. 2001. Prinsip Dasar Ilmu Gizi. Jakarta: PT Gramedia Pustaka Utama. Alvani Kamran, Xin Qi, Richard FT, Colin E. Snape. 2011. Physico-chemical properties of potato starches. Food Chemistry 2011: 125; 958–965 [AOAC] Association of Official Analytical Chemist. 2005. Official Methods of Analytical of The Association of Official Analytical Chemist . Washington DC: AOAC Apriyantono A, Fardiaz D, Puspitasari NL, Sedarnawati, dan Budijanto S. 1989. Analisis Pangan . Bogor: IPB Press. Arsyad MN. 2001. Kamus Kimia arti dan Penjelasan Ilmiah. Jakarta: Gramedia Pustaka Utama. Banks W, Greenwood CT. 1975. Starch and its components. Halsted Press: New York Bhattacharya M, Zee SY, Corke, H. 1999. Physicochemical properties related to quality of rice noodles. Cereal Chemistry 76, 861-867. Beynum GMA, Roels JA. 1985. Starch conversion technology. New York, U SA: Marcel-Dekker p. 980. Blennow A, Anne Mette Bay-Smidt, Carl EO, Birger LM. 2000. The distribution of covalently bound phosphate in the starch granule in relation to starch crystallinity. International Journal of Biological Macromolecules 2000; 27: 211–218 [BSN] Badan Standarisasi Nasional. 1992. Cara Uji Gula SNI 01-2892-1992. Jakarta: BSN. [BSN] Badan Standardisasi Nasional. 1992. Mutu dan Cara Uji Biskuit SNI 01- 2973-1992. Jakarta: BSN. [BSN] Badan Standardisasi Nasional. 1996. Standar Nasional Indonesia. SNI 01- 2974-1996 tentang Mie kering. Jakarta: BSN. Budiyah. 2004. Pemanfaatan pati jagung Corn Starch dan Protein Jagung Corn Gluten Meal dalam Pembuatan Mie Jagung Instan [Skripsi]. Bogor: Fakultas Teknologi Pertanian, Institut Pertanian Bogor. Campbell L A, Ketelsen SM, Antenucci RN. 1994. Formulating oatmeal cookies with calorie-sparing ingredients. Food Technology 48; 5: 98–105. Campbell MR, SR Mannis, AA Port, AM Zimmerman, DV Glover. 1999. Prediction of Starch amylose content versus total grain amylose content in corn by Near Infrared Transmittance Spectroscopy. Journal Cereal Chemistry 76; 4: 552-557. Catherwood DJ, Savage GP, Mason SM, Scheffer JJ. In press. 2007. Oxalate content of cormels of japanese taro corns Colocasia esculente L. Schott and the effect of cooking. Journal of Food Composition and Analysis 2000; 20: 147–151 Cotton F Albert, Geoffrey Wilkinson. 1989. Kimia Anorganik Dasar. Penerjemah : Sahati Suharto. Cet. 1. Jakarta: Penerbit Universitas Indonesia UI- Press. 1989 Chai Weiwen, Michael Liebman. 2005. Oxalate content of legumes, nuts, and grain-based flours. Journal of Food Composition and Analysis 2005:18; 723–729 Chalmers AH, Cowley DM, McWhinney BC. 1985. Stability of ascorbate in urine: relevance to analysis for ascorbate and oxalate. Clinical Chemistry 31;10 : 1703–1705. Charles et al. 2007. Study of wheat flour–cassava starch composite mix and the function of cassava mucilage in Chinese noodles. Food Hydrocolloids 2007; 21: 368–378 Chen Z, Schols HA, Voragen AGJ. 2003. Starch granule size strongly determines starch noodle processing and noodle quality. Journal of Food Science 68; 5: 1584–1589. Chen Z, Schols HA, Voragen AG. J. 2002. Physicochemical properties of starches obtained from three different varieties of Chinese sweet potatoes. Journal of Food Science 2002; 68: 431-437. Collado LS, Mabesa LB, Oates CG, Corke H. 2001. Bihon-type noodles fromheat-moisture-treated sweet potato starch. Journal of Food Science 66: 604-609. Copeland Les, Jaroslav Blazek, Hayfa Salman, Mary Chiming Tang. 2009. Form and functionality of starch. Food Hydrocolloids 2009; 23: 1527–1534 Dowd MK, M Radosavljevic, J Jane. 1999. Characterization of starch recovered from wet-milled corn fiber. Cereal Chem. 76; 1: 3 – 5. Das et al. 2009. Isolation and characterization of a heteropolysaccharide from the corn of Amorphophallus campanulatus. Carbohydrate Research 2009; 344: 2581–2585 [Depkes] Direktorat Gizi Departemen Kesehatan RI. 1990. Daftar komposisi bahan makanan . Jakarta: Bhatara Karya Aksara. Faisant N, Gallant DJ, Bouchet B, Champ M. 1995. Banana starch breakdown in the human small intestine studied by electron microscopy. European Journal of Clinical Nutrition 49: 98–104 Fellows PJ. 2000. Food Processing Technology: Principle and Practice 2nd Ed. England: CRC Press. Fennema OR. 1996. Food chemistry 4 th ed.. New York: Marcel Dekker. Figoni. 2003. Chapter five: Wheat Flour. 75033. 63-86 French D. 1984. Organization of starch granules. In R.L. Whistler, J.N. Bemmiler, E.F. Paschall eds Starch: Chemistry and Technology. New York: Academic Press Inc. Gustiar Haris. 2009. Sifat fisiskokimia dan indeks glikemik produk cookies berbahan baku pati garut Maranta arundinacea L. termodifikasi [Skripsi] Bogor: Fakultas Ilmu dan Teknologi Pangan, Insitut Pertanian Bogor. Hernandez JJ, JA Salayar M, EGR Ramirez. 2007. Physical, chemical and microscopic characterization of a new starch from chayote Sechium edule tuber and its comparison with potato and maize starches. Carbohydrate Polymers 2007: 68; 679–686 Holloway W, Argall M, Jealous W, Lee J, Bradbury J. 1989. Organic acids and calcium oxalate in tropical root crops. Journal of Agricultural and Food Chemistry 37: 337–340. Hoover R. 2001. Composition, molecular structure, and physicochemical properties of tuber and root starches : a review. Carbohydrate polymer 2001: 253-267 Hoover R, Vasanthan T. 1993. Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume, and tuber starches. Carbohydrate Research 1994; 252: 33-53 Huang Yu-Chan, Hsi-Mei Lai. 2010. Noodle quality affected by different cereal starches. Journal of Food Engineering 2010; 97: 135–143 Hoover R, T Hughes, H. J Chung dan Q. Liu. 2010. Composition, molecular structure, properties and modification of pulse starches: A review. Food Research International 2010;43: 399-413 Jane J, Wong KS, McPherson AE. 1996. Branch structure differences in starches of A and B types X-ray patterns revealed by their Naegli dextrins. Carbohydrate Research 300: 219–227. Jane et al. 1999. Effect of amylopectin brain chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 76; 5: 629 – 637 Judprasong et al. 2006. Total and soluble oxalate contents in Thai vegetables, cereal grains and legume seeds and their changes after cooking. Journal of Food Composition and Analysis 2006; 19: 340–347 Juniawati. 2003. Optimasi Proses Pengolahan Mie Jagung Instan Berdasarkan Kajian Preferensi Konsumen [Skripsi]. Bogor: Fakultas Teknologi Pertanian, Institut Pertanian Bogor. Hidayat N. 2008. Pati Ganyong Potensi Lokal yang Belum Termanfaatkan. Foodreview . Kamel BS. 1994. Creaming, emulsions, and emulsifiers. In Hamed Faridi Ed., The science of cookie and cracker production. New York: Chaman dan Hall. Kamasaka et al. 1995. Inhibitory effect of phosphorylated oligosaccharides prepared from potato starch on the formation of calcium phosphate. Bioscience, Biotechnology, and Biochemistry 59: 1412–1416 Kasemsuwan T, Jane JL. 1996. Quantitative method for the survey of starch phosphate derivatives and starch phospholipids by P-31 nuclear magnetic resonance spectroscopy. Cereal Chemistry 73: 702–707. Klucinec JD, Thompson DB. 1999. Amylose and amylopectin interact in retrogradation of dispersed high amylose starches. Cereal chem. 76: 282- 291 Kovacs MIP, BX Fu, K Khan. 2004. Thermal stability of wheat gluten protein: its effect on dough properties and noodle texture. Journal of Cereal Science 2004: 39; 9-19 Kriswidarti T. 1980. Suweg Amorphophallus campanulatus Bl. J. kerabat bunga bangkai yang berpotensi sebagai sumber karbohidrat. Buletin Kebun Raya vol. 45: 171 – 174. Kurdi W. 2002. Reduksi kalsium oksalat pada talas Bogor Colocasia esculenta L Schott sebagai upaya meningkatkan mutu keripik talas [Skripsi]. Bogor: Fakultas teknologi Pertanian, Insitut Pertanian Bogor. Kusnandar F. 2011. Kimia Pangan Komponen Makro. Jakarta : Dian Rakyat Lanier TC, Hart K, Martin RE. 1991. A manual of standard methods for measuring and specifying the properties of surimi . Washington, DC: National Fisheries Institute. Lii CY, Chang S.M. 1981. Characterization of red bean Phaseolus radiatus var Aurea starch and its noodle quality. Journal of Food Science 46: 78-81. Lu Q, Siyuan G, Shaobing Zhang. 2009. Effect of free lipids on textural and cooking qualities of chinese noodles. Food Research International 2009; 42: 226-230 Massey K Linda. 2007. Food Oxalate: Factors Affecting Measurement, Biological Variation, and Bioavailability. Journal of the american dietetic association Manley D. 2000. Tecnology of Biscuits, Crackers and Cookies 3rd Edition. Cambridge: Woodhead Publishing Limited. Marliana Eka. 2011. Karakterisasi dan Pengaruh NaCl terhadap kandungan oksalat dalam pembuatan tepung talas Banten [Skripsi]. Bogor: Fakultas Teknologi Pertanian, Institut Pertanian Bogor. Mariati. 2001. Karakterisasi Sifat Fisikokimia Pati dan Tepung Garut Marantha arundinacea L. dari Beberapa Varietas Lokal [Skripsi]. Bogor: Fakultas Teknologi Pertanian. Institut Pertanian Bogor. Matz AS dan Matz DT. 1978. Cookie and Cracker Technology. The AVI Publishing Company, Inc. Mayasari N. 2010. Pengaruh penambahan larutan asam dan garam sebagai upaya reduksi oksalat pada tepung talas Colocasia esculente L. Schott [Skripsi]. Bogor: Departemen Teknologi Industri Pertanian. Institut Pertanian Bogor. Miles MJ, Morris VJ, Orford PD, Ring SG. 1985. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate Research 135: 271-281 Moorthy S. N. 2002. Physicochemical and functional properties of tropical tuber starches : A review. StarchStarke 2002; 54: 559-592 Muchtadi D, Palupi NS, dan Astawan M. 1992. Metode Kimia, Biokimia, dan Biologi dalam Evaluasi Nilai Gizi . Bogor: Pusat Antar Universitas Pangan dan Gizi.IPB. Nadiha MZ, A Fazilah, Rajeev Bhat, Alias AK. 2010. Comparative susceptibilities of sago, potato and corn starches to alkali treatment. Food Chemistry 2010; 121: 1053–1059 Nakata PA. 2003. Advances in our understanding of calcium oxalate crystal formation and function in plants._Plant Science 2003; 164: 901-909. Noda et al. 2006. Effect of potato starch characteristics on textural properties of Korean-style cold noodles ,ade from wheat flour and potato starch blends. Food Sci. Technol. Res. 4; 12: 278-283 Noda et al. 2008. Factors affecting the digestibility of raw and gelatinized potato starches. Food Chemistry 2008; 110: 465–470 Noonan S, Savage GP. 1999. Oxalate content of food and its effect on humans. Asia Pacific journal of Clinical Nutrition 8; 1: 64-74 Nugroho L. H., 1998. Correlation between the levels of irritation and ultrastructure density, and size of raphid calcium oxalate crystals in the corms of edible Araceae species. Biologi 2; 6: 305-315 Ohtsuki T. 1968. Studies on reverse carbohydrate of flour Amorphophallus spesies with special refference to mannan. Botanical Magazine Tokyo 8 : 119-129 Paull RE, Chung-Shih Tang, Ken Gross, Gail Uruu. 1999. The nature of the taro acridity factor. Postharvest Biology and Technology 1999; 16: 71–78 Payne JH, JL Gaston dan G Akau. 1941. Processing and chemical investigation of Taro. University of Hawaii Agriculture Experiment station Bulletin 86. Rani VS, Jancy KJ, SN Moorthy, KCM Raja. 1998. Effect of Pretreatment of Fresh Amorphophallus Paeoniifolius on Physicochemical Properties of Starch. StarchStärke 50 1998 Nr. 2-3, S. 72–7 Rayas-Duarte P, Mock CM, Satterlee LD. 1996. Quality of spaghetti containing buckwheat, amaranth, and lupin flours. Cereal Chemistry 73: 381–387. Richana N dan Titi C. S. 2004. Karakterisasi sifat fisikokimia tepung umbi dan tepung pati dari umbi ganyong, suweg, ubikelapa dan gembili. J.Pascapanen 1; 1: 29-37. Rosenthal AJ. 1999. Food texture, measurement and perception. Gaithersburg, Md: Aspen Publishers Inc. 311p. Rukmana, R.1997. Ubi kayu. Yogyakarta: Penerbit Kanisius. Sajeev MS. 2000. Studies on settling and concentration of cassava starch suspensions [Thesis]. Coimbatore: Tamil Nadu Agricultural University. Sajilata MG, Singhal RS, dan Kulkarni PR. 2006. Resistant starch-a review. Comprehensive Reviews in Food Science and Food Safty . Vol. 5. 1–17. Sanabria Gerby Giovanna Rondán, Flavio Finardi-Filho. 2009. Physical–chemical and functional properties of maca root starch Lepidium meyenii Walpers. Food Chemistry 2009; 114: 492–498 Sandhu, Maninder, Mukesh. 2010. Studies on noodle quality of potato and rice starches and their blends in relation to their physicochemical, pasting and gel textural properties. Food Science and Technology 2010; 43: 1289-1293 Sangketkit CG, P Savage, RJ Martin, SL Mason. 2001. Oxalate Content of Raw and Cooked Oca Oxalis tuberosa. Journal of Food composition and analysis 2001; 14: 389-397 Savage GP, Vanhanen L, Mason SL, Ross AB. 2000. Efect of cooking on the soluble and insoluble oxalate content of some New Zealand foods. J. Food Comp. Anal. 13: 201-206. Savage GP, L. Martensson. 2010. Comparison of the estimates of the oxalate content of taro leaves and corms and a selection of Indian vegetables following hot water, hot acid and in vitro extraction methods. Journal of Food Composition and Analysis 2010; 23: 113–117 Scoch TJ, Maywald EC. 1968. Preparation and Properties of Various Legume Starches. Cereal Chemistry 45: 546-573 Setser CS. 1995. Sensory Evaluation. Didalam: Kramel dan Stauffer.Advances in Baking Technology. Glasgow: Blakie Academic and Proffesional. Singh, Narpinder. Sharmab. 2003. Physicochemical, rheological and cookie making properties of corn and potato flours. Food Chemistry 2003; 83: 387–393 Steel RG, JH Torrie. 1980. Principle and procedures of statistics, a biometrical approach . Kogakusha: McGraw-Hill Ltd. 633p. Tan HZ, Zai GL, Bin T. 2009. Starch noodles: History, classification, materials, processing, structure, nutririon, quality evaluating and improving. Food Research International 2009; 42: 551-576 Tester RF, Morrison WR. 1990. Swelling and gelatinization of cereal starches. I. Effect of amylopectin, amylose and lipids. Cereal Chemistry 67: 551–559. Tester RF, Karkalas J, 2004. Review Starch composition, fine structure and architecture. Journal of Cereal Science 2004; 39: 151–165 Vignaux et al. 2005. Quality of spaghetti made from full and partial waxy durum wheat. Cereal Chem 82:93– 100. Webb MA. 1999. Cell mediated chrystallization of calcium oxalate in plants. Plant cell 11:751-761 Widowati S. 2009. Tepung aneka umbi sebuah solusi untuk ketahanan pangan. Sinar tani Edisi 6 - 12 Mei 2009, No.3302 Tahun XXXIX Winarno FG. 1997. Kimia Pangan dan Gizi. Jakarta: Gramedia Pustaka Utama. Yadav BJ, Ritika BY, Mahesh K. 2011. Suitability of pigeon pea and rice starches and their blends for noodle making. Food Science and Technology 2011; 44: 1415-1421 Zaidul, Hiroaki Y, Sun-Ju K, Naoto H, Takahiro N. 2007a. RVA study of mixtures of wheat flour and potato starches with different phosphorus contents. Food Chemistry 2007; 102: 1105–1111 Zaidul et al. 2007b. Correlation between the compositional and pasting properties of various potato starches. Food Chemistry 2007; 105: 164–172 Zhou M, K. Robards, M. Glenie-Holmes, S. Helliwell. 1999. Structure and pasting properties of oat starch. Cereal Chem. 75; 3: 273 –281. Zoulias EI, V. Oreopoulou, C Tzia. 2002. Textural properties of low-fat cookies containing carbohydrate- or protein-based fat replacers. Journal of Food Engineering 2002; 55: 337–342 LAMPIRAN Lampiran 1. Kurva standar HPLC y = 6.1045x - 159.33 R 2 = 0.9953 200 400 600 800 1000 1200 50 100 150 200 250 Konse ntrasi ppm Ar e a Lampiran 2. Perhitungan konsentrasi total oksalat dalam sampel a. Pengaruh perlakuan penurunan kandungan oksalat terhadap total oksalat Sampel Ulangan Area Bobot kering g konsentrasi g100 g Rerata Penurunan Kontrol 1 76.00 1.3012 2.9926 3.6058 0.00 2 131.00 1.3002 3.6947 3 169.20 1.3162 4.1302 HCl 1 385.20 1.3419 0.6714 0.6066 83.17 2 276.40 1.3308 0.5417 NaCl 1 495.10 1.3522 0.8008 0.7951 77.95 2 480.00 1.3398 0.7895 NaOH 1 625.50 1.2921 1.0050 0.9549 73.52 2 573.30 1.3398 0.9047 Air 1 448.30 1.3090 0.7680 0.7471 79.28 2 424.80 1.3199 0.7322 3 422.40 1.2991 0.7409 No. Konsentrasi ppm Area 1. 24.75 30.1 2. 49.50 115,0 3. 99.00 419.7 4. 198.00 1064.2 ANOVA Sumber keragaman Jumlah Kuadrat Derajat bebas Kuadrat tengah Fhitung Sig. Perlakuan 18.185 4 4.546 47.277 .000 Sisaan .673 7 .096 Total 18.858 11 Konsentrasi Duncan Sampel N Subset for alpha = 0.05 1 2 HCl 2 .606550 air 3 .747033 NaCl 2 .795150 NaOH 2 .954850 kontrol 3 3.605833 Sig. .290 1.000 b. Pengaruh jenis pelarut terhadap total oksalat Sampel Ulangan Area Bobot kering g konsentrasi ppm Rerata Penurunan HCl 1 385.20 1.3419 0.6714 0.6066 83.17 2 276.40 1.3308 0.5417 NaCl 1 495.10 1.3522 0.8008 0.7951 77.95 2 480.00 1.3398 0.7895 NaOH 1 625.50 1.2921 1.0050 0.9549 73.52 2 573.30 1.3398 0.9047 Air 1 448.30 1.3090 0.7680 0.7471 79.28 2 424.80 1.3199 0.7322 3 422.40 1.2991 0.7409 ANOVA Sumber keragaman Jumlah Kuadrat Derajat bebas Kuadrat tengah Fhitung Sig. Perlakuan .125 3 .042 14.617 .007 Sisaan .014 5 .003 Total .139 8 Konsentrasi Duncan Sampel N Subset for alpha = 0.05 1 2 3 HCl 2 .606550 Air 3 .747033 NaCl 2 .795150 NaOH 2 .954850 Sig. 1.000 .389 1.000 c. Pengaruh lama perendaman terhadap total oksalat Waktu Menit Ulangan Area Bobot kering g Konsentrasi g100 g Rerata Penurunan 1 76.00 1.3012 2.9926 3.6058 0.00 2 131.00 1.3002 3.6947 3 169.20 1.3162 4.1302 30 1 41.40 1.3375 0.2483 0.2535 92.97 2 45.00 1.3125 0.2576 3 42.80 1.3142 0.2545 60 1 41.70 1.3074 0.2544 0.2542 92.95 2 41.40 1.3075 0.2540 90 1 39.20 1.3385 0.2454 0.2462 93.17 2 48.50 1.3194 0.2606 3 39.60 1.3327 0.2470 120 1 43.80 1.2996 0.2586 0.2800 92.24 2 48.50 1.3455 0.2556 3 91.90 1.2763 0.3257 ANOVA Sumber keragaman Jumlah Kuadrat Derajat bebas Kuadrat tengah Fhitung Sig. Perlakuan 26.386 4 6.597 89.650 .000 Sisaan .662 9 .074 Total 27.049 13 Konsentrasi Duncan Sampel N Subset for alpha = 0.05 1 2 1.5 3 .251000 0.5 3 .253467 1 2 .254200 2 3 .279967 segar 3 3.605833 Sig. .909 1.000 Lampiran 3. Data analisis amilosa Kurva standar amilosa No. Konsentrasi ppm Absorbans 1. 0.00 0.000 2. 4.06 0.113 3. 8.12 0.186 4. 12.18 0.269 5. 16.24 0.351 6. 20.30 0.430 y = 0.0207x + 0.0143 R 2 = 0.9963 0.1 0.2 0.3 0.4 0.5 5 10 15 20 25 Konsentrasi ppm Ab so rb an s Ulangan Absorbans Konsentrasi Bobot kering g Konsentrasi sebenarnya Rerata SD RSD 1 0.233 10.5652 0.09339111 22.63 22.4161 0.25 1.12 2 0.234 10.6135 0.09339111 22.73 3 0.234 10.6135 0.09559503 22.21 4 0.233 10.5652 0.09559503 22.10 Lampiran 4. Data analisis total pati Sampel Ulangan Bobot g Vol tio terpakai mL V tio sebenarnya mL Gula konversi Total pati blanko 26.25 Pati walur 1 0.91784 11.0 13.31325 33.845775 82.9697 2 0.91784 11.7 12.70215 32.195805 78.925 4 1.01123 10.0 14.18625 36.2215 80.5932 Rerata 80.83 SD 8.34 RSD 10.32 Lampiran 5. Data analisis daya cerna pati No. Konsentrasi ppm Absorbans 1. 0 0.000 2. 900 0.280 3. 1800 0.565 4. 2700 0.848 5. 3600 0.968 6. 4500 1.411 y = 0.0003x + 0.0071 R 2 = 0.9857 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1000 2000 3000 4000 5000 Konsentrasi ppm Ab so rb an s Sample Ulangan absorbans Konentrasi ppm Bobot g Konsentrasi sebenarnya ppm Daya cerna pati relative Standar 0.048 136.33 0.1132 3613.07 Blanko std 0.617 2033.00 0.1054 57865.28 Blanko pati 0.017 33.00 0.1045 947.35 Pati walur 1 0.308 1003.00 0.0937 32124.58 57.47 2 0.314 1023.00 0.0919 33387.06 59.79 3 0.344 1123.00 0.1020 33021.92 59.12 Rerata 58.79 SD 6.00 RSD 10.21 Lampiran 6. Data analisis kemampuan pengembangan pati walur Sampel Ulangan Bobot pati g Cawan kosong g Cawan + sample g Bobot basah Kemampuan mengembang gg Pati walur 1 0.0294 1.0903 1.6779 0.5876 20.00 2 0.0323 1.0869 1.7459 0.6590 20.39 3 0.0239 1.0905 1.5845 0.4940 20.69 Rerata 20.36 SD 0.35 RSD 1.72 Lampiran 7. Data analisis kelarutan pati walur Ulangan Bobot kering Setelah pemanasan g bobot kosong g kelarutan Rerata SD RSD 1 0.0294 4.7875 4.7834 13.95 13.63 0.46 4.6 2 0.0323 4.8991 4.8948 13.30 Lampiran 8. Kekuatan gel pati walur Ulangan Tepung terigu Pati walur Kekuatan gel gf Rerata gf Kekuatan gel gf Rerata gf 1 485.0 551.0 1134.0 1724.8 2 537.0 1895.5 3 631.0 2145.0 ANOVA Sumber keragaman Jumlah Kuadrat Derajat bebas Kuadrat tengah Fhitung Nilai-P F table Perlakuan 2066827 1 2066827 14.61422 0.018732 7.708647 Sisaan 565703.2 4 141425.8 Total 2632530 5 Kesimpulan Tolak H0 : Perbedaan sampel berpengaruh nyata terhadap kekuatan gel yang dihasilkan Lampiran 9. Data analisis kekerasan cookies Sampel Ulangan Kekerasan gf Kontrol 25 50 75 100 1 568.8 490.9 404.6 370.0 215.4 2 529.2 529.1 434.3 411.3 252.4 3 575.4 492.8 403.8 393.0 271.1 Rerata 557.8 504.3 414.2 391.4 246.3 Kesimpulan Tolak H0 : Perbedaan sampel berpengaruh nyata terhadap kekuatan gel yang dihasilkan ANOVA Sumber keragaman Jumlah Kuadrat Derajat bebas Kuadrat tengah Fhitung Nilai-P Perlakuan 171213.969 4 42803.492 81.632 .000 Sisaan 5243.480 10 524.348 Total 176457.449 14 Kekerasan Duncan Sampel N Subset for alpha = 0.05 1 2 3 4 100 3 246.300 75 3 391.433 50 3 414.233 25 3 504.267 3 557.800 Sig. 1.000 .251 1.000 1.000 Lampiran 10. Rekapitulasi data Uji Organoleptik Cookies pati walur Panelis WARNA AROMA RASA 446 287 618 925 869 446 287 618 925 869 446 287 618 925 869 1 6 6 5 3 3 6 6 3 3 3 6 6 5 3 3 2 6 3 6 5 2 5 5 6 4 4 4 5 5 4 4 3 6 5 5 3 2 7 6 6 5 5 7 6 6 5 3 4 7 6 6 6 6 5 6 6 6 4 5 4 6 6 6 5 6 5 5 4 4 6 5 5 6 5 6 5 6 6 5 6 7 5 4 5 2 6 7 6 6 6 6 7 5 6 7 7 6 4 3 3 2 4 4 5 6 6 3 4 5 6 6 8 7 5 5 3 3 7 6 5 4 4 6 7 5 4 4 9 6 5 3 3 5 6 6 3 3 6 7 5 5 5 6 10 6 4 6 4 3 6 6 6 6 5 6 6 6 5 4 11 7 3 4 4 3 6 6 5 4 4 6 6 6 6 6 12 6 6 6 6 6 4 3 6 6 3 3 4 6 5 4 13 4 3 6 3 3 4 6 4 3 4 6 6 4 3 3 14 7 6 6 6 5 6 6 6 6 5 6 6 6 6 6 15 7 6 5 5 3 6 6 5 3 3 6 6 7 5 3 16 7 6 4 4 4 6 6 4 4 3 7 6 4 3 3 17 7 5 6 3 4 6 6 6 3 3 6 5 6 4 3 18 7 6 6 6 7 6 5 5 4 4 6 6 5 4 6 19 7 6 4 3 3 7 6 4 3 2 7 7 5 6 4 20 6 7 5 5 3 6 6 5 3 3 6 6 5 5 4 21 5 7 5 4 3 6 7 5 5 5 6 7 5 4 4 22 6 6 5 4 4 5 6 4 4 4 5 6 4 3 3 23 7 7 6 5 5 6 6 6 6 5 6 6 6 6 5 24 6 5 5 6 6 6 6 6 5 6 5 4 3 3 6 25 7 5 6 6 6 6 6 6 6 6 5 5 5 5 5 26 6 6 5 4 4 6 6 5 4 4 6 6 5 3 3 Rerata 6.3 5.3 5.1 4.3 3.9 5.8 5.8 5.1 4.5 4.3 5.7 5.7 5.2 4.7 4.5 Panelis KERENYAHAN KESELURUHAN AFTER TASTE 446 287 618 925 869 446 287 618 925 869 446 287 618 925 869 1 6 6 6 6 6 6 6 5 3 3 6 6 6 3 3 2 6 6 6 6 6 6 3 5 5 4 7 6 6 6 6 3 4 5 6 5 3 7 7 5 3 3 7 6 3 3 3 4 5 6 5 6 6 6 6 5 6 6 4 5 6 5 6 5 6 6 5 4 3 6 6 5 4 4 6 6 5 4 4 6 7 7 6 6 6 7 7 6 7 6 7 6 6 5 7 7 4 4 4 5 6 4 4 4 5 6 5 5 5 6 6 8 7 7 5 4 4 6 6 5 4 4 6 6 5 4 3 9 6 6 5 5 6 6 5 3 5 5 5 4 5 5 5 10 6 6 6 6 6 6 6 6 5 5 6 6 6 5 5 11 7 6 6 6 6 6 6 6 5 3 6 6 6 6 6 12 4 4 4 4 6 3 4 5 4 4 4 4 6 5 5 13 6 6 5 3 4 6 5 4 3 3 6 5 4 3 3 14 6 6 5 5 6 6 6 5 6 5 6 6 6 6 6 15 6 7 6 6 6 6 6 6 5 3 6 5 5 4 3 16 7 7 6 4 4 6 6 4 4 4 7 6 4 4 4 17 6 6 6 6 6 7 6 6 5 5 6 5 2 3 3 18 6 6 6 6 6 7 6 5 5 6 7 6 5 5 6 19 4 5 4 6 4 7 6 4 3 3 6 6 4 3 3 20 6 6 5 5 4 6 6 5 5 4 6 6 5 4 3 21 6 7 6 6 5 5 6 5 5 5 6 5 3 3 3 22 5 6 6 6 6 6 6 2 2 2 5 6 2 2 2 23 5 6 7 6 5 6 6 6 5 5 6 6 6 5 4 24 6 6 5 3 5 5 6 5 3 6 3 5 2 6 6 25 6 6 6 6 6 6 6 6 6 6 4 4 4 4 4 26 6 6 6 5 5 6 6 5 4 4 6 6 5 3 3 Rerata 5.7 6.0 5.5 5.2 5.2 5.9 5.7 4.9 4.5 4.4 5.7 5.5 4.7 4.3 4.3 Multivariate Tests b Effect Value F Hypothesis df Error df Sig. Panelis Pillais Trace 2.447 2.755 150.000 600.000 .000 Wilks Lambda .037 2.847 150.000 564.304 .000 Hotellings Trace 4.662 2.901 150.000 560.000 .000 Roys Largest Root 1.314 5.256 a 25.000 100.000 .000 Sampel Pillais Trace .790 4.019 24.000 392.000 .000 Wilks Lambda .339 5.042 24.000 332.625 .000 Hotellings Trace 1.588 6.187 24.000 374.000 .000 Roys Largest Root 1.336 21.824 a 6.000 98.000 .000 Source Dependent Variable Type III Sum of Squares Df Mean Square F Sig. Model Warna 3403.785 a 30 113.459 133.144 .000 Aroma 3473.615 b 30 115.787 138.859 .000 Rasa 3509.523 c 30 116.984 116.429 .000 Kerenyahan 4030.769 d 30 134.359 230.735 .000 Keseluruhan 3476.631 e 30 115.888 146.011 .000 AT 3249.062 f 30 108.302 107.295 .000 Panelis Warna 70.592 25 2.824 3.314 .000 Aroma 44.500 25 1.780 2.135 .004 Rasa 43.908 25 1.756 1.748 .028 Kerenyahan 43.577 25 1.743 2.993 .000 Keseluruhan 54.092 25 2.164 2.726 .000 AT 71.292 25 2.852 2.825 .000 Sampel Warna 93.185 4 23.296 27.338 .000 Aroma 47.815 4 11.954 14.336 .000 Rasa 33.123 4 8.281 8.241 .000 Kerenyahan 10.569 4 2.642 4.538 .002 Keseluruhan 51.431 4 12.858 16.200 .000 AT 46.662 4 11.665 11.557 .000 Error Warna 85.215 100 .852 Aroma 83.385 100 .834 Rasa 100.477 100 1.005 Kerenyahan 58.231 100 .582 Keseluruhan 79.369 100 .794 AT 100.938 100 1.009 Total Warna 3489.000 130 Aroma 3557.000 130 Rasa 3610.000 130 Kerenyahan 4089.000 130 Keseluruhan 3556.000 130 AT 3350.000 130 Kesimpulan : Penambahan pati walur berpengaruh nyata terhadap seluruh parameter yang diujikan UJI DUNCAN Aroma Sampel N Subset a b C 100 26 4.31 75 26 4.54 50 26 5.12 25 26 5.77 Kontrol 26 5.77 Sig. .364 1.00 1.00 Rasa Sampel N Subset a b 100 26 4.46 75 26 4.65 50 26 5.23 25 26 5.65 Kontrol 26 5.69 Sig. .491 .120 Kerenyahan Sampel N Subset a b c 100 26 5.23 75 26 5.23 Warna Sampel N Subset a b C 100 26 3.88 75 26 4.35 50 26 5.08 25 26 5.31 Kontrol 26 6.35 Sig. .074 .370 1.00 50 26 5.50 5.50 25 26 5.73 5.73 Kontrol 26 5.96 Sig. .235 .278 .278 Keseluruhan Sampel N Subset a b c 100 26 4.38 75 26 4.50 4.50 50 26 4.92 25 26 5.73 Kontrol 26 5.92 Sig. .642 .090 .438 After Taste Sampel N Subset a b 75 26 4.31 100 26 4.31 50 26 4.69 25 26 5.50 Kontrol 26 5.73 Sig. .197 .410 Lampiran 11. Kuisioner organoleptik cookies UJI HEDONIK Produk : Cookies Pati Walur Tanggal : 3 November 2010 Nama : Instruksi : 1. Nyatakan penilaian anda dengan memberikan tanda √ checklist pada pernyataan yang sesuai dengan penilaian anda. 2. Cicipilah sampel yang tersedia dan berilah penilaian terhadap warna, aroma, kerenyahan, dan rasa masing-masing sampel sesuai penilaian anda. 3. Bilaslah indera pencicip anda dengan air yang disediakan sebelum mencicipi sampel berikutnya.

4. Jangan membandingkan antar sampel

PENILAIAN WARNA AROMA 446 446 287 618 925 869 287 618 925 869 Sangat suka Suka Agak suka Netral Agak tidak suka Tidak suka Sangat tidak suka PENILAIAN RASA AFTER TASTE 446 446 287 618 925 869 287 618 925 869 Sangat suka Suka Agak suka Netral Agak tidak suka Tidak suka Sangat tidak suka PENILAIAN KERENYAHAN KESELURUHAN 446 446 287 618 925 869 287 618 925 869 Sangat suka Suka Agak suka Netral Agak tidak suka Tidak suka Sangat tidak suka TERIMA KASIH BANYAK ☺ SEMOGA HARI ANDA MENYENANGKAN