Kesimpulan Saran KESIMPULAN DAN SARAN

V. KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil penelitan yang telah dilakukan dapat ditarik beberapa kesimpulan sebagai berikut: 1. Penggunaan teknologi pirolisis pada proses pengolahan sampah organik padat dapat menghasilkan produk bermanfaat berupa arang dan asap cair, sedangkan teknologi biodekomposer sangat efektif untuk menangani sampah organik lunak menghasilkan kompos berkualitas. 2. Biodekomposer yang dapat mempercepat proses pengomposan sampah organik menghasilkan kompos bermutu terbaik adalah EM-4, campuran Orgadec-EM-4- Arang-Asap cair dan campuran Orgadec-Biodek-Arang-Asap cair. 3. Teknologi pirolisis dapat mengkonversikan sampah organik yang sukar dikomposkan menjadi arang dan asap cair. Arang hasil pirolisis pada suhu 505 o C bermutu terbaik dan asap cair yang dihasilkan pada proses tersebut menunjukkan kadar total fenol tertinggi. 4. Metode aktivasi arang sampah organik pasar menjadi arang aktif bermutu terbaik, terutama dalam hal daya jerapnya terhadap iodin, ialah dengan cara aktivasi menggunakan uap H 2 O pada suhu 800 o C selama 120 menit. 5. Asap cair hasil pirolisis sampah organik pada suhu 505 o C menghasilkan rendemen 31,24, kadar total fenol 223,95 mgl, dan pH 4,1. Fraksi metanol dan air dari asap cair tersebut berpotensi sebagai antifeedant, karena aktivitasnya melebihi 50 terhadap larva S. litura, dan nilai EI 50 -nya sama-sama 0,71. 6. Penggunaan komarasca hasil konversi sampah organik berpengaruh sangat nyata baik terhadap pertambahan tinggi batang, jumlah daun, dan anakan maupun terhadap bobot biomassa tanaman daun dewa terutama ditunjukkan oleh perlakuan campuran tanah-abu-kompos yang diberi arang aktif hasil aktivasi dengan uap H 2 O pada suhu 800 o C selama 120 menit, dan fraksi metanol dari asap cair. 147

5.2 Saran

Agar proses pengomposan sampah dapat diterapkan di lingkungan permukiman, maka disarankan untuk dilakukan penelitian lanjutan tentang proses pengomposan yang mampu mendapatkan metode minimisasi bau secara lebih optimal. Di samping itu, juga perlu dilakukan penelitian lanjutan untuk mengisolasi senyawa aktif antifeedant dari fraksi metanol hasil fraksinasi asap cair sampah organik guna mengetahui rumus strukturnya. DAFTAR PUSTAKA Agusta, A., Jamal, Y., dan M. Harapini.1998. Komponen minyak atsiri daun dewa Gynura procumbens dan kirinyu Tithonia diversifolia. Laporan Teknik. Proyek Penelitian, Pengembangan dan Pendayagunaan Biota Darat 19971998. Puslitbang Biologi-LIPI. p:328-333. Agustina, S. 2004. Kajian Proses Aktivasi Ulang Arang Aktif Bekas Adsorpsi Gliserin Dengan Metode Pemanasan [Tesis Program Magister]. Sekolah Pascasarjana, Institut Pertanian Bogor. Bogor. Ahmad, S.A., A. Tochidi, dan S. Efendi. 1980. Ilmu Kimia Organik. Angkasa. Bandung. Anonim. 2004. Mekanisme pelayanan kebersihan di Kota Bogor. Dinas Kebersihan dan Pertamanan Kota Bogor. Bogor. Bali, R.M., S.G. Mode, A.Y. Kolte, R.D. Sadekar, and S.D. Harne. 2000. Efficacy of pefloxacin in enteric colibacillosis in calves. Journal of Indian Veterineer 77: 981- 983. Basumatary, B., P. Dutta, M. Prasad and K. Srinivasan. 2005. Thermal modeling of active carbon based adsorptive natural gas storage system. Carbon 433:541-549. Benaddi, H., T.J. Bandosz, J. Jagiello, J.A. Schwarz, J.N. Rouzaud, D. Legras, and F. Beguin. 2000. Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon 38:669-674. Boudou, J.P., M. Chehimi, E. Broniek, T. Siemieniewska, and J. Bimer. 2003. Adsorption of H 2 S or SO 2 on an activated carbon cloth modified by ammonia treatment. Carbon 4110:1999-2007. [BPPT] Badan Penelitian dan Pengembangan Teknologi. 1999. Penerapan Konsep Zero Waste Sampah Perkotaan di Indonesia. Kelompok Teknologi Pengelolaan Sampah dan Limbah Padat. BPPT. Jakarta. [BPTP] Balai Penelitian Teknologi Perkebunan. 2004. Sampah ternyata efektif untuk pakan ternak. http:www.balipos.go.id. [8 Mei 2005]. Brasquet, C., B, Rousseau, H.E. Szwarckopf., and O.L. Cloirec. 2000. Observation of activated carbon fibres with SEM and AFM correlation with adsorption data in aqueous solution. Carbon 38:407-422 Bratzler, L.J., M.E. Spooner, J.B. Weathspoon, and J.A. Maxey. 1969. Smoke flavours as related to phenol, carbonil, and acid content of Bologna. Journal of Food Science 34:146-153. Brennan, J.K., T.J. Bandosz, K.T. Thomson, and K.E. Gubbins. 2001. Water in porous carbons. Colloids and Surfaces A: Phycicochem. Eng. Aspects 187-188:539-568. 149 [BSN] Badan Standarisasi Nasional. 2004. Spesifikasi kompos dari sampah organik domestik. Jakarta: BSN; SNI 19-7030-2004. [BSN] Badan Standarisari Nasional. 1996. Arang kayu. Jakarta: BSN; SNI 01-1682- 1996. [BSN] Badan Standarisari Nasional. 1995. Arang aktif teknis. Jakarta: BSN; SNI 06- 3730-95 Bukle, K.A., R.A. Edwards, G.H. Fleet, and M. Wooton. 1985. Ilmu Pangan. H. Purnomo dan Adiono [Penerjemah]. Terjemahan dari: Food Science. UI Press. Jakarta. Byrne, C.E., and D.C. Nagle. 1997. Carbonization of wood for advanced materials applications. Carbon 352:259-266 Chacha, M., G. Bojase-Moleta, and R.R.T Majinda. 2005. Antimicrobial and radical scavenging flavonoids from the steam wood of Erythrina latissima. Phytochemistry 66:99-104. Chen, J.P., S. Wu, and K.H. Chong. 2003. Surface modification of a granular activated carbon by citric acid for enhancement of copper solution. Carbon 41:1979-1986. Cheng-Juri, J., Y. Hong, and C. Zhi-Rong. 2005. Hydrogenation of ortho-nitrochloro- benzene on activated carbon supported platinum catalysts. Jounal of Zhejiang University Science 6B5:378-381. Ciner, D.O., and R. Tipirdamaz. 2002. The effects of cold treatment and charcoal on the in vitro androgenesis of Pepper Capsicum annuum L.. Turk Journal of Botany 26:131-139. Concheso, A., R. Santamaria, M. Granda, R. Menendez, J.M. Jimenez-Mateos, R. Alcantara, P. Lavela, and J.L. Tirado. 2005. Influence of oxidative stabilization on the electrochemical behaviour of coal tar pitch deriveds carbons in lithium batteries. Electrochemica Acta 50:1225-1232. Dahuri, D. 2 Juni 2003. Sampah organik dan kotoran kerbau sebagai energi alternatif. Media Indonesia: 7 kolom 2-5. Daifullah, A.A.M., and B.S. Girgis. 1998. Removal of some substituted phenols by activated carbon obtained from agricultural waste. Water Research 324:1169- 1177 Darmadji, P. 1995. Produksi asap cair dan sifat fungsionalnya [Laporan Penelitian]. Fakultas Teknologi Pertanian. Universitas Gadjah Mada. Yogyakarta. Davalos, A., B. Bartolome, and C. Gomez-Cordoves. 2005. Antioxidant properties of commercial grape juices and vinegar. Food Chemistry 93:325-330 Delgado, J.A., and R.F. Follent. 2002. Carbon and nutrient cycles. Journal of Soil and Water Conservation 576:455-458 150 Demirbas, A., E. Pehlivan, and T. Altun. 2006. Potential evolution of Turkish agricultural residues as bio-gas, bio-char and bio-oil sources. International Journal of Hidrogen Energy 31:613-620 Demirbas, A. 2005. Pyrolysis of ground beech wood in irregular heating rate conditions. Journal of Analytical and Applied Pyrolysis 73:39-43. Djatmiko, B., S. Ketaren, dan S. Setyahartini. 1985. Pengolahan arang dan kegunaannya. Agro Industri Press. Bogor Djuarnani, N., Kristian, dan B.S. Setiawan. 2005. Cara Cepat Membuat Kompos. AgroMedia Pustaka. Jakarta. Edwards, C. 1990. Microbiology of Extreme Environment. McGraw-Hill Publishing Company. New York. El-Hendawy, A.N. 2003. Influence of HNO 3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 414:713-722. Engelhardt, J. 1995. Industrial derivatives and commercial aplication of cellulose. Journal Carbohydrate in Europe 12:5-13. Ercin, D. and Y. Yurum. 2003. Carbonisation of Fir Abies bornmulleriana wood in an open pyrolysis system at 50-300 o C. Journal of Analytical and Applied Pyrolysis 67:11-22 Fernandez-Mateos, A., E.M. Martin, R.R. Clemente, R.R. Gonzalez, and M.S.J. Simmonds. 2005. Synthesis of the insect antifeedant CDE molecular fragment of 12-ketoepoxyiazadiradione and related compounds. Tetrahedron 61:12264-12274. Figueroa-Torres, M.Z., A. Robau-Sanchez, L.D.I. Torre-Saenz, and A. Aguilar- Elguezabal. 2007. Hydrogen adsorption by nanostructured carbons synthesized by chemical activation. Microporous and Mesoporous Materials 98:89-93 Firmansyah. 2004. Penggunaan Kombinasi Serbuk Kayu Jati dan Cangkang Telur Ayam pada Produksi Asap Cair [Skripsi]. Fakultas Peternakan. Institut Pertanian Bogor. Bogor. Frackowiak, B., K. Ochalik, A. Bialonska, Z. Ciunik, C. Wawrzenczyk, and S. Lochynski. 2006. Stereochemistry of terpene derivates. Part 5: Synthesis of chiral lactones fused to a carane system-insect feeding deterrents. Tetrahedron: Asymmetry 17: 124-129 Fricke, K., H. Santen, R. Wallmann, A. Huttner, and N. Dichtl. 2007. Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Management 27:30-43 Fuertes, A.B., G. Marban, and D.M. Nevskaia. 2003. Adsorption of volatil organic compound by means of active carbon fibre-based monoliths. Carbon 411:87-96. 151 Gaier, J.R., N.F. Ditmars, and A.R. Dillon. 2005. Aqueous electrochemical intercalation of bromine into graphite fibers. Carbon 43:189-193. Gardner, F.P., R.B. Pearce, and R.L. Mitchell. 1991. Fisiologi Tanaman Budidaya. UI- Press. Jakarta Gaur, A.C. 1983. A Manual Rural of Composting. Project Field Document. Food and Agricultural Organization United Nations. Rome. Gebbinck, E.A.K., B.J.M. Jansen, and A.D. Groot. 2002. Review: Insect antifeedant activity of clerodane diterpenes and related model compounds. Phytochemistry 61: 737-770 Gerard, M.C., and J.P. Barthelemy. 2003. An assessment methodology for determining pesticides adsorption on granulated activated carbon. Biotechnology Agron. Soc. Environ. 72:79-85. Gheek, P., S. Suppan, J. Trawczynski, A. Hynaux, C. Sayag, and G.D. Mariadssou. 2007. Carbon black composites-supports of HDS catalysts. Catalysis Today 119:19-22 Girard, J.P. 1992. Smoking in Technology of Meat Products. Clermont Ferrand. Ellis Horwood. New York. Goenadi, D.H. dan Y. Away [penemu]; Balai Penelitian Bioteknologi Perkebnan Indonesia. 5 Des 2000. Orgadec. Paten No.: ID 0 000264 S Gomez-Serrano, V., M.C. Fernandez-Gonzales, M.L. Rojas-Cervantes, M.F. Alexandre- Franco, and A. Macias-Garcia. 2003. Carbonization and demineralization of coals: a study by means of FT-IR spectroscopy. Bulletin Material Science 267:721-732. Gomez-Serrano, V., E.M. Cuerda-Correa, M.C. Fernandez-Gonzalez, M.F. Alexandre- Franco, and A. Macias-Garcia. 2005. Preparation of activated carbons from chestnut wood by phosphoric acid chemical activation. Study of microporosity and fractal dimension. Material Letters 597:846-853. Guo, J., Y. Luo, A.C. Lua, R.A. Chi, Y.L. Chen, X.T. Bao, and S.X. Xiang. 2007. Adsorption of hydrogen sulphide H 2 S by activated carbons derived from oil-palm shell. Carbon 45:330-336 Guo, J., and A.C. Lua. 2000. Preparation and characterization of adsorbents from oil palm fruit solid wastes. Journal of Oil Palm Research 121:64-70. Gusmailina, G. Pari, S. Komarayati, dan Rostiwati S. 2001. Alternatif arang aktif sebagai soil conditioning pada tanaman. Buletin Penelitian Hasil Hutan 193:185-199. Gusmailina, dan G. Pari. 2002. Pengaruh pemberian arang terhadap pertumbuhan tanaman cabai merah Capsicum annum. Buletin Penelitian Hasil Hutan 203:217-229. 152 Gusmailina, G. Pari, dan S. Komarayati. 2004. Teknologi produksi dan pemanfaatan arang kompos dari limbah pembalakan dan industri kayu skala kecil. Laporan Hasil Penelitian. Puslitbang Teknologi Hasil Hutan. Bogor. Gusmailina, G. Pari, dan S. Komarayati. 2000. The Utilization Technology on Charcoal as a Soil Conditioning [Project Report]. Forest Products Research Centre. Bogor. Han, M-K., S-I. Kim, and Y-J. Ahn. 2006. Insecticidal and antifeedant activities of medicinal plant extracts against Attagenus unicolor japonicus Coleoptera: Dermestidae. Journal of Stored Production Research 42: 15-22. Han, M.S., B.G. Lee, B.S. Ahn, D.J. Moon, and S.I. Hong. 2003. Surface properties of CuCl 2 AC catalysts with various Cu contents: XRD, SEM, TGDSC and CO-TPD analyses. Applied Surface Science 2111-4:76-81. Harada, Y., K. Haga, Tosada, and M. Koshino. 1993. Quality of compost produced from animal waste. Japan Agriculture Research Quarterly. 264:238-246. Harborne, J. B. 1988. Metode Fitokimia: Penuntun Cara Modern Menganalisis Tumbuhan Terjemahan Kosasih Padmawinata. Terbitan ke-2, ITB Press. Bandung. Harris, P. 1999. On charcoal. Interdisciplinary Science Review 244:301-306. Hartoyo, dan G. Pari. 1993. Peningkatan rendemen dan daya serap arang aktif dengan cara kimia dosis rendah dan gasifikasi. Jurnal Penelitian Hasil Hutan 115:205-208. Haug, R.T. 1980. Compost Engineering Principles and Practices. Ann Arbor Science. Michigan. Hayashi, J., N. Yamamoto, T. Horikawa, K. Muroyama, and V.G. Gomes. 2005. Preparation and characterization of high-specific-surface-area activated carbons from K 2 CO 3 -treated waste polyurethane. Journal of Colloids Interface Science 2812:437-443. Hemingway, R.W., and J.J.Karchesy. 1989. Chemistry and significance of condensed tannins. Plenum. New York. Hendaway, A.N.A. 2003. Influence of HNO 3 oxidation on the structure and adsorptive properties of corncorb-based activated carbon. Carbon 41:713-722 Hendra, D., dan G. Pari. 1995. Pembuatan arang aktif dari kayu Acacia managium dengan gasifikasi “Fluidized bed”. Jurnal Penelitian Hasil Hutan 136:252-257 Hernandez-Apaolaza, L., A.M. Gasco, J.M. Gasco, and F. Guerrero. 2005. Reuse of waste materials as growing media for ornamental plants. Bioresource. Technology. 96:125-131. Heyne, K. 1987. Tumbuhan Berguna Indonesia. Balai Penelitian dan Pengembangan Kehutanan. Departemen Kehutanan. Jakarta 153 Hirose, T., T. Fujino, T. Fan, H. Endo, T. Okabe, and M. Yoshimura. 2002. Effect of carbonization temperature on the structural changes of woogceramics impregnated with liquefied wood. Carbon 405: 761-765. Hossain, S.H. and N. Anantharaman. 2006. Activity enhancement of lignolytic enzymes of Trametes versicolor with bagasse powder. African Journal Biotechnology 51: 189-194 Indriani, Y.H. 2005. Membuat Kompos Secara Kilat. Cetakan VII. Penebar Swadaya. Jakarta. Jaguaribe, E.F., L.L. Medeiros, M.C.S. Barreto, and L.P. Araujo. 2005. The performance of activated carbons from sugarcane bagasse, babassu, and coconut shells in removing residual chlorine. Brazilian Journal Chemical Enggineering 2201:41-47. Jannet, H.B., F.H. Skhiri, Z. Mighri, M.S.J. Simmonds, and W.M. Blaney. 2001. Antifeedant activity of plant extracts and of new natural diglyceride compounds isolated from Ajuga pseudoiva leaves against Spodoptera littoralis larvae. Industrial Crops Production 14: 213-222 Javanmardi, J., C. Stushnoff, E. Locke, and J.M. Vivanco. 2003. Antioxidant activity and total phenolic content of Iranian O. accessions. Food Chemistry 83:547-550. Jeong, Y-K. and S-J Hwang. 2005. Optimum doses of Mg and P salts for precipitating ammonia into struvite crystals in aerobic composting. Bioresource Technology 96:1-6. Jiratchariyakul, W.S, A. Jarikasem, Somanbandhu, and A.W. Frahm. 2001. Atiherpes simplex viral compounds from G. procumbens. http:www.ppp. upsi.Edu.my pi.2.htm. [4 Juni 2005] Kercher, A. and D.C. Nagle. 2003. Microstructural evolution during charcoal carbonization by X-Ray diffraction analysis. Carbon 41:15-27. Kim, Y.A., T. Matusita, T. Hayashi, M. Endo, and M.S. Dresselhaus. 2001. Topological changes of vapor grown carbon fibers during heat treatment. Carbon 3911:1747- 1752. Kinoshita K. 2001. Electrochemical uses of carbon. Di dalam Electrochemistry Encyclopedia. http:electrochem.cwru.eduedencyclhtm [10 Mei 2005] Klose, W., and S. Rincon. 2007. Adsorption and reaction of NO on activated carbon in the presence of oxygen and water vapour. Fuel 86:203-209 Komarayati, S., Gusmailina, dan G. Pari. 2003. Aplikasi arang kompos pada anakan tusam Pinus merkusii. Buletin Penelitian Hasil Hutan 211:15-21. Komarayati, S., dan I. Indrawati. 2003. Isolasi dan identifikasi mikroorganisme dalam arang kompos. Buletin Penelitian Hasil Hutan 213:251-258. 154 Komarayati, S. 2004. Penggunaan arang kompos pada media tumbuh anakan mahoni. Jurnal Penelitian Hasil Hutan 224:193-203. Komilis, D.P. 2006. A Kinetic analysis of solid waste composting at optimal conditions. Waste Management 26:82-91 Komilis, D.P., and R.K. Ham. 2006. Carbon dioxide and ammonia emissions during composting of mixed paper, yard waste and food waste. Waste Management 26:62-70 Kyotani, T. 2000. Control of pore structure in carbon. Carbon 38:269-286 Laszlo, K., K. Josepovits, and E. Tombacz. 2001. Analysis of active sites on synthetic carbon surfaces by various methods. Analytical Science 17:41-44 Lee, Y.J. and L.R. Radovic. 2003. Oxidation inhibition effects of phosphorus and boron in different carbon fabrics. Carbon 41:1987-1997. Lillo-Rodenas, M., D. Cazorla-Amoros, and A. Linares-Solano. 2003. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon 412:267-275. [LIPI] Lembaga Ilmu Pengetahuan Indonesia. 1999. Arang aktif dari tempurung kelapa. http:www.pdii.lipi.go.idarang_aktif_ tempurung_kelapa.htm. [10 Mei 2005]. [LTP] Lembaga Teknologi Pertanian. 1974. Metode dan Prosedur Pemeriksaan Kimiawi Hasil Perikanan. Dirjen Perikanan Departemen Pertanian. Jakarta: LTP. Machida, M., M. Aikawa, and H. Tatsumoto. 2005. Prediction of simultaneous adsorption of CuII and PbII onto activated carbon by conventional Langmuir type aquations. Journal of Hazardous Materials 1201-3:271-275. Machnikowski, J., B. Grzyb, H. Machnikowska, and J.V. Weber. 2005. Surface chemistry of porous carbons from N-polymers and their blends with pitch. Microporous and Mesoporous Materials. in press. Mahendra, S. and L. Alvarez-Cohen. 2005. Pseudonocardia dioxanivorans sp. Nov., a novel actinomycete that grows on 1,4-dioxane. Internatioan Journal of Systematic and Evolutionary Microbiology 55: 593-598 Manocha, S. 2003. Porous carbon. Sadhana 281-2:335-348. Marinovic, V., M. Ristic, and M. Dostanic. 2005. Dynamic adsorption of trinitro-toluene on granular activated carbon. Journal of Hazardous Materials 1172-3:121-128. Maroto-Valer, M.M., Y. Zhang, E.J. Granite, Z. Tang, and H.W. Pennline. 2005. Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample. Fuel 84:105-108. 155 Matsuzawa, Y., K. Mae, I. Hasegawa, K. Suzuki, H. Fujiyoshi, M. Ito, and M. Ayabe. 2007. Characterization of carbonized municipal waste as substitute for coal fuel. Fuel 86:264-272 Mattjik, A.A., dan M. Sumertajaya. 2000. Perancangan Percobaan dengan Aplikasi SAS dan Minitab. IPB Press. Bogor Menendez, J.A., E.M. Menendez, M.J. Iglesias, A. Garcia, and J.J. Pis. 1999. Modification of the surface chemistry of active carbons by means of microwave induced treatments. Carbon 37:1115-1121 Miller, L.C., and L.B. McCarty. 2002. Activated charcoal for pesticide deactivation. http:www.sodsolutions.comturffmgtcharcoal.htm. [10 Mei 2005]. Morales, M.L., B. Benitez, and A.M. Troncoso. 2004. Accelerated aging of wine vinegars with oak chips: evaluation of wood flavour compounds. Food Chemistry 88:305-315 Murbandono, L. 2005. Membuat Kompos. Edisi Revisi. Penebar Swadaya. Jakarta Murtadho, D., dan E.G. Sa’id. 1988. Penanganan dan Pemanfaatan Limbah Padat. Mediyatama Sarana Perkasa. Jakarta. Nakai, T., S.N. Kartal., T. Hata, and Y. Imamura. 2006. Chemical characterization of pyrolysis liquids of wood-based composities and evaluation of their bio-efficiency. Building and Environment. In press. Nakashima, N., Y. Mitani, and T. Tamura. 2005. Actinomycetes as host cells for production of recombinant proteins. Microb. Cell Factories 47: 1-5 Namane, A., A. Mekarzia, K. Brenrachedi, N. Belhaneche-Bensemra, and A. Hellal. 2005. Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl 2 and H 3 PO 4 . Journal of Hazardous Materials 1191-3:189-194. Narasimhan, S., S. Kannan, K. Ilango, and G. Maharajan. 2005. Antifeedant activity of Momordica dioica fruit pulp extracts on Spodoptera litura. Fitoterapia 76: 715-717 Narasimhan, S., S. Kannan, V.P. Santhanakrishnan, and R. Mohankumar. 2005. Insect antifeedant and growth regulating activities of salannobutyrolactone and desacetylsalannobutyrolactone. Fitoterapia 76: 740-743 Nguyen-Thanh, D., and T.J. Bandosz. 2005. Activated carbon with metal containing bentonite binders as adsorbents of hydrogen sulfide. Carbon 432:359-367. Nguyen, T.X., and S.K. Bhatia. 2005. Characterization of activated carbon fibers using argon adsorption. Carbon 434:775-785. 156 Nischwitz, C., M. Olsen, and S. Rasmussen. 2002. Influence of salinity and root rot nematode asa stress factors in charcoal rot on melon. http:ag.arizona.edupubs cropsaz. 292.pdf. [23 Juni 2005]. Nishiyama, N., T. Zheng, Y. Yamane, Y. Egashira, and K. Ueyama. 2005. Microporous carbons prepared from cationic surfactant-reasorcinolformaldehyde composites. Carbon 439:269-274. Noike, T. 2005. Present status of Biowaste recycling in Japan. http:www.jora.jpanor engimgnoike.pdf. [6 Juni 200]. Novicio, L.P., T. Hata, T. Kajimoto, Y. Imamura, and S. Ishihara. 1998. Removal of mercury from aqueous solutions of mercuric chloride using wood powder carbonized at high temperature. Journal of Wood Research 85:48-55 Nurhayati, T., Saepuloh, dan Sylviani. 2002. Analisis teknis dan ekonomis produksi arang aktif industri pedesaan. Buletin Penelitian Hasil Hutan 205:353-366. Nurhayati, T. 2000. Sifat destilat hasil destilasi kering 4 jenis kayu dan kemungkinan pemanfaatannya sebagai pestisida. Buletin Penelitian Hasil Hutan 17:160-168. Pari, G. 1996. Pembuatan arang aktif dari serbuk gergajian sengon dengan cara kimia. Bulletin Penelitian Hasil Hutan 148:308-320. Pari, G. 2004. Kajian Struktur Arang Aktif dari Serbuk Gergaji Kayu sebagai Adsorben Emisi Formaldehida Kayu Lapis [Disertasi Program Doktor]. Sekolah Pascasarjana, Institut Pertanian Bogor. Bogor. Pari, G., D. Hendra, dan R.A. Pasaribu. 2006. Pengaruh lama waktu aktivasi dan konsentrasi asam fosfat terhadap mutu arang aktif kulit kayu Acacia mangium. Jurnal Penelitian Hasil Hutan 241:33-46 Paris, O., C. Zollfrank, and G.A. Zickler. 2005. Decomposition and carbonization of wood biopolymer microstructural study of softwood pyrolisis. Carbon 43:53-66. Pastorova, I., R.E. Botto, P.W. Arisz, and J.J. Boon. 1994. Cellulose char structure: A combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydrate Research 262:27-47 Poage, G.W., C.B. Scott, M.G. Bisson, and F.S. Hartmann. 2000. Activated charcoal attenuates bitterweed toxicosis in sheep. Journal of Range Management 531:73-78. Prem, D., K. Gupta, and A. Agnihotri. 2004. Development of an efficient high frequency microspore embryo induction and doubled haploid generation system for Indian mustard Brassica juncea. Proceeding of the 4 th International Crop Science Congress. Brisbane. Australia. 26 Sep –1 Oct 2004. 157 Pszczola, D.E. 1995. Tour highlights production and uses of smoke-based flavors. Liquid smoke a natural aqueous condensate of wood smoke provides various advantages in addition to flavors and aroma. Journal of Food Technology 1:70-74. Puziy, A.M., O.I. Poddubnaya, A.M. Alonso, F.S. Garcia, and J.M.D. Tascon. 2003. Synthetic carbons activated with phosphoric acid III. Carbons prepared in air. Carbon 41:1181-1191 Qadeer, R., and S. Akhtar . 2005. Kinetics study of lead ion adsorption on activated carbon. Turk Journal Chemistry 29:95-99. Rangel-Mendez, J.R., and F.S. Cannon. 2005. Improved activated carbon by thermal treatment in methane and steam: Physicochemical influences on MIB sorption capacity. Carbon 433:467-479. Ratnaningsih, I., Dyatmiko, W., dan I.G.P. Santa. 1985. Studi Pendahuluan Fitokimia Gynura procumbens Back. Prosiding I Seminar Pembudidayaan Tanaman Obat. Poerwokerto. Rice, E.L. 1984. Allelopathy, Second Edition. Academic Press. New York. Robau-Sanchez, A., A. Aguilar-Elguezabal, and J. Aguilar-Pliego. 2005. Chemical activation of Quercus agrifolia char using KOH: Evidence of cyanide presence. Microporous and Mesoporous Materials 85:331-339 Sahwan, L.F. 1999. Karakteristik kompos dari sampah kota di plant pengomposan Tambakboyo, Kabupaten Dati II Sleman, Yogyakarta. Jurnal Sains dan Teknologi Indonesia 14: 75-79. Saito, Y., and T. Arima. 2007. Features of vapor-grown cone-chaped graphitic whiskers deposited in the cavities of wood cells. Carbon 45:248-255 Saito, Y., and T. Arima. 2002. Growth of cone-chaped carbon material inside the cell lumen by heat treatment of wood charcoal. Journal of Wood Science 485:451-454 Salisbury, F.B., and. C.W. Ross. 1995. Fisiologi Tumbuhan. Jilid I. Terjemahan D.R. Lukman dan Sumaryono. ITB Press. Bandung. Sanchez-Polo, M., R. Leyva-Ramos, and J. Rivera-Utrilla. 2005. Kinetics of 1,3,6- naphthalene-trisulphonic acid ozonation in presenc of activated carbons. Carbon 435:962-969. Santoso, D., dan D. Gunawan. 1999. Ramuan Tradisional untuk Penyakit Kulit. Penebar Swadaya. Jakarta. Saraswati, R. 6 November 2005. Komunikasi Pribadi. Bogor Sartamtomo, I. Fauzi, M. Rifai, D. Maniaryadi, I. Setyaningsih, S. Haryati, dan Saifuddin. 1997. Teknologi adsorpsi karbon aktif untuk mengolah air limbah industri. 158 Balitbang Industri. Departemen Perindustrian dan Perdagangan Republik Indonesia. Semarang. Satori, M. 24 Januari 2002. Daur ulang, solusi atasi sampah kota. Harian Pikiran Rakyat: 5 kolom 2-4. Sayan, E. 2006. Ultrasound-assisted preparation of activated carbon from alkaline impregnated hazelnut shell: An optimization study on removal of Cu 2+ from aqueous solution. Chemical Engineering Journal 115:213-218 Schukin, L.I., M.V. Konnievich, R.S. Vartapetjan, and S.I. Beznisko. 2002. Low temperature plasma oxidation of activated carbons. Carbon 40:2021-2040 Setiawan, M.D. 2001. Penerapan konsep zero waste dalam pengelolaan sampah perkotaan. http.www.geocities.com.0-zero.waste.doc. [10 Mei 2005]. Shen, L., and D.K. Zhang. 2005. Low-temperature pyrolysis of sewage sludge and putrescible garbage for fuel oil production. Fuel 84:809-815 Shih, C.C., and J.R. Chang. 2005. Genesis and growth of platinum subnano-particles on activated carbon characterized by X-ray absorption spectroscopy: effects of preparation conditions. Materials Chemistry and Physics 921:89-97. Shuixia, C., L. Ying, X. Ruimei, and Z. Hanmin. 2001. Preparation and their antibacterial acitivity of activated carbon fiber loading silver compounds. http:acs.omni-books- online.compapers2001_P1.45.pdf. [4 Juni 2005]. Sibelzor. 2004. Investigation of the adsorption of anionic surfactants different pH values by means of activated carbon and the kinetics of adsorption. Journal of Serbia Chemical Society 691:25-32. Siregar H.M. dan N.W. Utami. 2002 Usaha Untuk Meningkatkan Produktivitas Umbi Daun Dewa {Gynura pseudochina L.DC.}. Di dalam: Naiola B.P et al., editor. Prosiding Simposium Nasional II Tumbuhan Obat dan Aromatik APINMAP; Bogor, 8-10 Agustus 2001. Bogor: Pusat Penelitian Biologi – LIPI bekerja sama dengan KEHATI, APINMAP, UNESCO, JICA. 310-315. Smith, R.S.J., C.S Hodges CS Cordell CE. 2004. Charcoal root rot and black root rot. http:www.forestpests.orgver.2X1.1.html. [23 Juni 2005]. Smisek, M., and S. Cerny. 2002. Active carbon: manufacture, properties, and application. Elsevier Publishing Co. New York. http:www.ams.usda.govnop NationalList TAPReviewsactivecarbon.pdf. [10 Mei 2005]. Soetarno, S., Suganda, A.G., Sugihartina, G. dan Sukrasno. 2000. Flavonoid dan asam- asam fenolat dari daun dewa Gynura procumbens. Warta Tumbuhan Obat Indonesia 6:6-7. Solovyov, L.A., A.N. Shmakov, V.I. Zaikovskii, S.H. Joo, and R. Ryoo. 2002. Detailed structure of the hexagonally packed mesostructured carbon material CMK-3. Carbon 40:2477-2481 159 Srivastava, V.C., M.M. Swamy, I.D. Mall, B. Prasad, and I.M. Mishra. 2006. Adsorptive removal of phenol by baggase fly ash and activated carbon: equilibrium, kinetics, and thermodynamics. Colloids and Surfaces A: Physicochemical Enggineering Aspects 272:89-104 Srivibool, R., K. Kurakami, M. Sukchotiratana, and S. Tokuyama. Coastal soil actinomycetes: thermotolerant strains producing N-acylamino acid racemase. Science Asia 30: 123-126 Stavropoulos, G.G., and A.A. Zabaniotou. 2005. Production and characterization of activated carbons from olive-seed waste residue. Microporous and Mesoporous Materials 82:79-85 Strom, P.F. 1985. Effects of temperature on bacterial species diversity in thermophilic solid-waste composting. Applied and environmental microbiology 504:899-905 Strom, P.F. 1985. Identification of thermophilic bacteria in solid-waste composting. Applied and environmental microbiology 504:906-913 Su, C., and R.W. Puls. 2007. Removal of added nitrate in cotton burr compost, mulch compost, and peat: Mecanisms and potential use for groundwater nitrate remediation. Chemosphere 66:91-98 Su, M-S., and J.L. Silva. 2006. Antioxidant activity, anthocyanins, and phenolicc of rabbiteye blueberry Vaccinium ashei by products as affected by fermentation. Food Chemistry 97:447-451 Sudjana. 1985. Desain dan Analisis Eksperimen. Tarsito. Bandung. Sudradjat, R., dan S. Soleh. 1994. Petunjuk teknis pembuatan arang aktif. Bagian Proyek Litbang Pemanfaatan Hasil HTI Pusat Litbang Hasil Hutan dan Sosial Ekonomi Kehutanan. Bogor. Suler, D.J., and M.S. Finstein. 1977. Effect of temperature, aeration, and moisture on CO 2 formation in Bench-scale, continuously thermophilic composting of solid waste. Applied and Environental Microbiology 332:345-350 Sukmadi, B., dan D. Hardianto. 2000. Pengujian aktivitas formulasi mikroorganisme dekomposisi pada proses pengomposan bahan organik. Makalah disampaikan pada Pertemuan Ilmiah Tahunan Mikrobiologi Indonesia di Denpasar, 27-28 Juni 2000. Perhimpunan Mikrobiologi Indonesia. Denpasar, pp. 23-28. Swain, T. 1979. Tannins and lignin: Their interaction with secondary metabolites. Academic Press. New York. Takagi, H., H. Hatori, Y. Yamada, S. Matsuo, and M. Shiraishi. 2004. Hydrogen adsorption properties of activated carbons with modified surfaces. Journal of Alloys and Compounds 3851-2:257-263. 160 Talashilkar, S.C., P.P. Bhangarath, and V.B. Metha. 1999. Changes in chemical properties during composting of organic residues as influenced by earthworm activity. Journal of the Indian Society of Soil Science 471:50-53. Tanaike, O., and M. Inagaki. 1999. Degradation of carbon materials by intercalation. Carbon 37:1759-1769 Tansel, B., and P. Nagarajan. 2004. SEM study of phenolphthalein adsorption on granular activated carbon. Advances in Environmental Research 8:411-415 Thoison, O., T. Sevenet, H.M. Niemeyer, and G.B. Russell. 2004. Insect antifeedant compounds from Nothofagus dombeyi and Nothofagus pumilio. Phytochemistry 65: 2173-2176 Tim Redaksi Trubus. 1999. Pupuk Akar. Penebar Swadaya. Jakarta. Tranggono, S., B. Setiadji, P. Darmadji, Supranto, dan Sudarmanto. 1997. Identifikasi asap cair dari berbagai jenis kayu dan tempurung kelapa. Jurnal Ilmu dan Teknologi Pangan 12:15-24. Tuomela, M., M. Vikman, A. Hatakka, and M. Itavaara. 2000. Biodegradation of lignin in a compost environment: a review. Bioresource Technology 72:169-183. Villalba, J.J., F.D. Provenda, and R.E. Banner. 2002. Influence of macronutrients and activated charcoal on intake of sagebrush by sheep and goats. Journal Animal Science 80:2099-2109. Villegas, J.P., and C.J.D. Valle. 2001. Pore structure of chars and activated carbon prepared using carbon dioxide at different temperatures from extracted rockrose. Carbon 57:1-13 Wahyono, S. 12 Januari 2004. Teknologi pengomposan untuk atasi sampah. Kompas:11 kolom 6-8. Wang, L-S., J. Liu, Y-Z. Zang, Y. Zhao, and P-J. Gao. 2003. Comparison of domains function between cellobiohydrolase I and endoglucanase I from Trichoderma pseudokoningii S-38 by limited proteolysis. Journal Molecular Catalysis. B: Enzimatic 24-25: 27-38. Weil, R.R., K.R. Islam, M.A. Stine, J.B. Gruver, and S.E. Susan-Liebeg. 2003. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. American Journal of Alternative Agriculture 181:3-17. Wibowo, A., dan D. Djajawinata. 2003. Penanganan sampah perkotaan terpadu. http: kkppi.go.idpapbookpananganan20sampah20perkotaan20terpadu.pdf. [10 Mei 2005]. Wijayakusuma, H.M.H., Wirian, A.S., Yaputra, T., Dalimartha, dan S.B. Wibowo. 1992. Tanaman Berkhasiat Obat Di Indonesia. Jilid 1. Pustaka Kartini. Jakarta. 161 Williams, P.T., and A.R. Reed. 2003. Pre-formed activated carbon matting derived from the pyrolysis of biomass natural fibre textile waste. Journal of Analytical and Applied Pyrolysis 70:563-577 Winarto, W.P., A. Permadi, dan B. Mahendra. 2003. Daun Dewa: Dudi Daya Pemanfaatan untuk Obat. Penebar Swadaya. Jakarta. Yang, R., X. Qiu, H. Zhang, J. Li, W. Zhu, Z. Wang, X. Huang, and L. Chen. 2005. Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol. Carbon 43:11-16. Yang, S. 1997. Preparation of Compost, and Evaluating Its Maturity. Extension Bulletin 445. Food and Fertilizer Technology Center. Yu, G., F. Wang, Z. Dai, and Z. Yu. 2005. Porous catalyst intraparticle status of paralel, equilibrium-restrained reactions. Chemical Engineering and Processing 44:33-39 Yulistiani, R. 1997. Kemapuan penghambatan asap cair terhadap pertumbuhan bakteri pathogen dan perusak pada lidah sapi [Tesis Program Magister]. Program Pascasarjana, Universitas Gadjah Mada. Yogyakarta. Yusa, H., and T. Watanuki. 2005. XRD of multiwalled carbon nanotube under high pressure structural durability on static compression. Carbon 433:519-523. Yuwono D. 2006. Kompos. Penebar Swadaya. Jakarta. Zhang, F.S., J.O. Nriagu, and H. Itoh. 2005. Mercuri removal from water using activated carbons derived from organic sewage sludge. Water Research 392-3:389-395. Zhang, G.Q., G.X. Tang, W.J. Song, and W.J. Zhou. 2004. Resynthesizing Brassica napus from interspecific hybridization between Brassica rapa and Brassica oleracea through ovary culture. Euphytica 30:1-7. Zang, X.F, and B.K.H. Tang. 2000. Effects of an ethanolic extract og Gynura procumbens on serum glucose, cholesterol ang triglyceride levels in normal and streptozotocin- induced diabetic rats. http:www.singaporemedj2000,vol 411 [4 Juni 2005]. Zawadzki, J., and M. Wisniewski. 2007. An infrared study of the behavior of SO 2 and NOx over carbon and carbon-supported catalysts. Catalysis Today 119:213-218 LAMPIRAN 163 Lampiran 1. Sidik Ragam Aktivator, Waktu dan Suhu dan Interaksinya pada Pembuatan Arang Aktif A. Faktor Tunggal Sifat JK KT Fhitung Aktivator 1. Rendemen, 2. Kadar air, 3. Kadar zat terbang, 4. Kadar abu, 5. Kadar karbon, 6. Daya jerap iodin, mgg 7. Daya jerap benzena, 12447,80 53,21 1908,60 2830,25 8003,70 1613252,60 1417,66 2489,56 10,64 381,72 566,05 1600,74 322650,52 283,53 503,83 28,34 277,82 142,17 248,38 200,03 59,62 Waktu 1. Rendemen, 2. Kadar air, 3. Kadar zat terbang, 4. Kadar abu, 5. Kadar karbon, 6. Daya jerap iodin, mgg 7. Daya jerap benzena, 32,03 7,75 0,48 27,21 20,45 158817,16 37,78 32.03 7,75 0,48 27,21 20,45 158817,16 37,78 6,48 20,63 0,35 6,83 3,17 98,46 7,94 Suhu 1. Rendemen, 2. Kadar air, 3. Kadar zat terbang, 4. Kadar abu, 5. Kadar karbon, 6. Daya jerap iodin, mgg 7. Daya jerap benzena, 7,01 2,84 0,01 37,34 38,62 29931,93 33,02 7,01 2,84 0,01 37,34 38,62 29931,93 33,02 1,42 7,56 0,01 9,38 5,99 18,56 6,94 Keterangan: = sangat nyata = nyata B. Interaksi Dua Faktor 164 Sifat JK KT Fhitung Aktivator-Waktu 1. Rendemen, 2. Kadar air, 3. Kadar zat terbang, 4. Kadar abu, 5. Kadar karbon, 6. Daya jerap iodin, mgg 7. Daya jerap benzena, 681,37 61,47 84,30 85,97 109,37 435902,48 179,53 136,27 12,29 16,86 17,19 21,87 87180,50 35,91 27,58 32,74 12,27 4,32 3,39 54,05 7,55 Aktivator-Suhu 1. Rendemen, 2. Kadar air, 3. Kadar zat terbang, 4. Kadar abu, 5. Kadar karbon, 6. Daya jerap iodin, mgg 7. Daya jerap benzena, 259,72 26,02 61,95 55,09 165,97 271171,45 62,60 51,94 5,20 12,39 11,02 33,19 54234,29 12,52 10,51 13,86 9,02 2,77 5,15 33,62 2,63 Waktu-Suhu 1. Rendemen, 2. Kadar air, 3. Kadar zat terbang, 4. Kadar abu, 5. Kadar karbon, 6. Daya jerap iodin, mgg 7. Daya jerap benzena, 57,27 1,12 18,49 3,58 38,27 9264,78 5,42 57,27 1,12 18,49 3,58 38,27 9264,78 5,42 11,59 2,98 13,46 0,90 5,94 5,74 1,14 C. Interaksi Tiga Faktor Sifat JK KT Fhitung Aktivator-Waktu-Suhu 1. Rendemen, 2. Kadar air, 3. Kadar zat terbang, 4. Kadar abu, 5. Kadar karbon, 6. Daya jerap iodin, mgg 7. Daya jerap benzena, 407,79 7,74 40,56 72,59 177,22 178128,11 27,37 81,56 1,55 8,11 14,52 35,44 35625,62 5,47 16,51 4,12 5,90 3,65 5,50 22,09 1,15 Lampiran 2. Uji BNT Cara Duncan Rendemen Arang Aktif 165 A. Faktor Tunggal Faktor Rata-rata Klasifikasi Keterangan: A1 81,05 AB A1= aktivasi panas A2 51,85 E A2= aktivasi uap H 2 O A3 63,45 D A3= aktivasi KOH 0,5M A4 78,96 C A4= aktivasi KOH 1M A5 77,20 B A5= aktivasi H 3 PO 4 0,5M A6 81,95 A A6= aktivasi H 3 PO 4 1M W1= waktu 60 menit W1 71,58 B W2= waktu 120 menit W2 73,23 A B. Interaksi Dua Faktor Aktivator-Waktu Faktor Rata-rata Klasifikasi A1W1 80,45 ABC A2W1 56,54 F A3W1 62,55 E A4W1 76,01 D A5W1 79,49 BCD A6W1 81,55 AB A1W2 81,00 ABC A2W2 50,45 G A3W2 63,73 E A4W2 79,24 BCD A5W2 77,11 CD A6W2 83,48 A C. Interaksi Dua Faktor Aktivator-Suhu Faktor Rata-rata Klasifikasi A1S1 78.79 AB A1S2 82.66 A A2S1 54.04 D A2S2 49.61 E A3S1 62.35 C A3S2 63.93 C A4S1 76.44 B A4S2 78.81 AB A5S1 79.11 AB A5S2 79.55 AB A6S1 80.78 AB A6S2 82.19 A D. Interaksi Dua Faktor Waktu-Suhu Faktor Rata-rata Klasifikasi 166 W1S1 71.72 A W1S2 73.81 A W2S1 71.11 A W2S2 72.11 A E. Interaksi Tiga Faktor Aktivator-Waktu-Suhu Faktor Rata-rata Klasifikasi A1W1S1 78.70 CDE A1W1S2 82.20 ABC A2W1S1 55.59 IJ A2W1S2 57.50 I A3W1S1 62.75 GH A3W1S2 62.35 GH A4W1S1 71.95 F A4W1S2 80.08 BCD A5W1S1 82.85 AB A5W1S2 80.25 BCD A6W1S1 78.50 DE A6W1S2 80.48 ABC A1W2S1 78.88 CDE A1W2S2 83.13 AB A2W2S1 52.50 J A2W2S2 49.73 K A3W2S1 61.95 H A3W2S2 65.50 G A4W2S1 80.93 ABCD A4W2S2 77.55 DE A5W2S1 75.38 E A5W2S2 78.85 CDE A6W2S1 83.05 AB A6W2S2 83.90 A Keterangan: A1= aktivasi panas W1 = waktu 60 menit A2= aktivasi uap H 2 O W2 = waktu 120 menit A3= aktivasi KOH 0,5M A4= aktivasi KOH 1M S1 = suhu 700 o C A5= aktivasi H 3 PO 4 0,5M S2 = suhu 800 o C A6= aktivasi H 3 PO 4 1M Lampiran 3. Uji BNT Cara Duncan Kadar Air Arang Aktif 167 A. Faktor Tunggal Faktor Rata-rata Klasifikasi Keterangan: A1 1.72 C A1= aktivasi panas A2 1.12 D A2= aktivasi uap H 2 O A3 2.95 A A3= aktivasi KOH 0,5M A4 3.20 A A4= aktivasi KOH 1M A5 2.90 A A5= aktivasi H 3 PO 4 0,5M A6 2.19 B A6= aktivasi H 3 PO 4 1M W1 2.06 B W1= waktu 60 menit W2 2.63 A W2= waktu 120 menit S1 2.17 B S1= suhu 700 o C S2 2.52 A S2= suhu 800 o C B. Interaksi Dua Faktor Aktivator-Waktu Faktor Rata-rata Klasifikasi A1W1 1.69 C A2W1 0.95 C A3W1 2.68 B A4W1 1.28 C A5W1 2.84 B A6W1 2.93 B A1W2 1.75 C A2W2 1.28 C A3W2 3.23 B A4W2 5.11 A A5W2 2.96 B A6W2 1.46 C C. Interaksi Dua Faktor Aktivator-Suhu Faktor Rata-rata Klasifikasi A1S1 1.82 DEF A1S2 1.62 EF A2S1 1.09 F A2S2 1.14 F A3S1 1.64 DEF A3S2 4.26 A A4S1 3.13 ABC A4S2 3.26 AB A5S1 2.90 BCD A5S2 2.90 BCD A6S1 2.47 BCDE A6S2 1.92 CDEF C. Interaksi Tiga Faktor Aktivator-Waktu-Suhu Faktor Rata-rata Klasifikasi A1W1S1 2.36 CDEF A1W1S2 1.02 H 168 A2W1S1 0.98 H A2W1S2 0.93 H A3W1S1 1.53 EFGH A3W1S2 3.83 B A4W1S1 1.45 FGH A4W1S2 1.11 H A5W1S1 2.46 CDE A5W1S2 3.23 BC A6W1S1 3.22 BC A6W1S2 2.65 CD A1W2S1 1.28 GH A1W2S2 2.23 DEFG A2W2S1 1.20 H A2W2S2 1.36 GH A3W2S1 1.76 EFGH A3W2S2 4.70 A A4W2S1 4.82 A A4W2S2 5.41 A A5W2S1 3.34 BC A5W2S2 2.58 CD A6W2S1 1.71 EFGH A6W2S2 1.20 H Keterangan: A1= aktivasi panas W1 = waktu 60 menit A2= aktivasi uap H 2 O W2 = waktu 120 menit A3= aktivasi KOH 0,5M A4= aktivasi KOH 1M S1 = suhu 700 o C A5= aktivasi H 3 PO 4 0,5M S2 = suhu 800 o C A6= aktivasi H 3 PO 4 1M Lampiran 4. Uji BNT Cara Duncan Kadar Zat Terbang Arang Aktif A. Faktor Aktivator Faktor Rata-rata Klasifikasi Keterangan: 169 A1 18.95 A A1= aktivasi panas A2 10.75 C A2= aktivasi uap H 2 O A3 15.64 B A3= aktivasi KOH 0,5M A4 16.11 B A4= aktivasi KOH 1M A5 7.32 D A5= aktivasi H 3 PO 4 0,5M A6 7.48 D A6= aktivasi H 3 PO 4 1M B. Interaksi Dua Faktor Aktivator-Waktu Faktor Rata-rata Klasifikasi A1W1 18.99 A A2W1 11.82 D A3W1 14.39 C A4W1 14.91 C A5W1 7.19 FG A6W1 8.54 EF A1W2 18.91 A A2W2 9.68 E A3W2 16.90 B A4W2 17.31 AB A5W2 7.46 FG A6W2 6.43 G C. Interaksi Dua Faktor Aktivator-Suhu Faktor Rata-rata Klasifikasi A1S1 18.57 AB A1S2 19.33 A A2S1 11.63 E A2S2 9.87 F A3S1 14.09 D A3S2 17.20 BC A4S1 16.74 C A4S2 15.48 CD A5S1 7.69 G A5S2 6.95 G A6S1 7.48 G A6S2 7.49 G D. Interaksi Dua Faktor Waktu-Suhu Faktor Rata-rata Klasifikasi W1S1 13.07 A W1S2 12.21 A W2S1 12.33 A W2S2 13.23 A 170 E. Interaksi Tiga Faktor Aktivator-Waktu-Suhu Faktor Rata-rata Klasifikasi A1W1S1 19.32 AB A1W1S2 18.66 ABC A2W1S1 12.77 E A2W1S2 10.88 F A3W1S1 14.44 E A3W1S2 14.34 E A4W1S1 16.13 D A4W1S2 13.68 E A5W1S1 7.09 HIJK A5W1S2 7.29 HIJK A6W1S1 8.66 H A6W1S2 8.42 HI A1W2S1 17.82 BCD A1W2S2 20.01 A A2W2S1 10.49 FG A2W2S2 8.87 GH A3W2S1 13.74 E A3W2S2 20.07 A A4W2S1 17.34 CD A4W2S2 17.27 CD A5W2S1 8.30 HIJ A5W2S2 6.61 IJK A6W2S1 6.30 K A6W2S2 6.55 JK Keterangan: A1= aktivasi panas W1 = waktu 60 menit A2= aktivasi uap H 2 O W2 = waktu 120 menit A3= aktivasi KOH 0,5M A4= aktivasi KOH 1M S1 = suhu 700 o C A5= aktivasi H 3 PO 4 0,5M S2 = suhu 800 o C A6= aktivasi H 3 PO 4 1M Lampiran 5. Uji BNT Cara Duncan Kadar Abu Arang Aktif A. Faktor Tunggal Faktor Rata-rata Klasifikasi Keterangan: A1 14.98 C A1= aktivasi panas 171 A2 14.73 C A2= aktivasi uap H 2 O A3 21.83 B A3= aktivasi KOH 0,5M A4 24.93 A A4= aktivasi KOH 1M A5 10.13 D A5= aktivasi H 3 PO 4 0,5M A6 10.87 D A6= aktivasi H 3 PO 4 1M W1 16.78 A W1= waktu 60 menit W2 15.71 B W2= waktu 120 menit S1 15.62 B S1= suhu 700 o C S2 16.87 A S2= suhu 800 o C B. Interaksi Dua Faktor Aktivator-Waktu Faktor Rata-rata Klasifikasi A1W1 16.47 C A2W1 15.86 CD A3W1 22.17 B A4W1 26.39 A A5W1 10.10 F A6W1 9.70 F A1W2 13.50 DE A2W2 13.61 DE A3W2 21.50 B A4W2 23.48 B A5W2 10.17 F A6W2 12.04 EF C. Interaksi Dua Faktor Aktivator-Suhu Faktor Rata-rata Klasifikasi A1S1 14.06 D A1S2 15.91 D A2S1 14.90 D A2S2 14.57 D A3S1 20.42 C A3S2 23.25 B A4S1 23.30 B A4S2 26.56 A A5S1 9.83 E A5S2 10.43 E A6S1 11.23 E A6S2 10.50 E D. Interaksi Tiga Faktor Aktivator-Waktu-Suhu Faktor Rata-rata Klasifikasi A1W1S1 15.56 FG A1W1S2 17.38 EF A2W1S1 14.86 FGH A2W1S2 16.86 EF A3W1S1 21.81 BCD 172 A3W1S2 22.52 BC A4W1S1 26.25 A A4W1S2 26.53 A A5W1S1 9.78 J A5W1S2 10.42 J A6W1S1 9.85 J A6W1S2 9.55 J A1W2S1 12.55 GHIJ A1W2S2 14.44 FGHI A2W2S1 14.95 FGH A2W2S2 12.27 HIJ A3W2S1 19.02 DE A3W2S2 23.98 AB A4W2S1 20.36 CD A4W2S2 26.59 A A5W2S1 9.89 J A5W2S2 10.44 J A6W2S1 12.62 GHIJ A6W2S2 11.46 IJ Keterangan: A1= aktivasi panas W1 = waktu 60 menit A2= aktivasi uap H 2 O W2 = waktu 120 menit A3= aktivasi KOH 0,5M A4= aktivasi KOH 1M S1 = suhu 700 o C A5= aktivasi H 3 PO 4 0,5M S2 = suhu 800 o C A6= aktivasi H 3 PO 4 1M Lampiran 6. Uji BNT Cara Duncan Kadar Karbon Terikat Arang Aktif A. Faktor Tunggal Faktor Rata-rata Klasifikasi Keterangan: A1 66.07 C A1= aktivasi panas A2 74.52 B A2= aktivasi uap H 2 O A3 62.52 D A3= aktivasi KOH 0,5M 173 A4 58.96 E A4= aktivasi KOH 1M A5 82.55 A A5= aktivasi H 3 PO 4 0,5M A6 81.65 A A6= aktivasi H 3 PO 4 1M S1 71.68 A S1= suhu 700 o C S2 70.41 B S2= suhu 800 o C B. Interaksi Dua Faktor Aktivator-Waktu Faktor Rata-rata Klasifikasi A1W1 64.54 DE A2W1 72.32 C A3W1 63.45 E A4W1 58.71 F A5W1 82.72 A A6W1 81.77 A A1W2 67.60 D A2W2 76.71 B A3W2 61.60 EF A4W2 59.22 F A5W2 82.38 A A6W2 81.54 A C. Interaksi Dua Faktor Aktivator-Suhu Faktor Rata-rata Klasifikasi A1S1 67.38 C A1S2 64.76 C A2S1 73.47 C A2S2 75.56 B A3S1 65.50 C A3S2 59.55 D A4S1 59.97 D A4S2 57.96 D A5S1 82.48 A A5S2 82.62 A A6S1 81.29 A A6S2 82.01 A D. Interaksi Dua Faktor Waktu-Suhu Faktor Rata-rata Klasifikasi W1S1 70.59 A W1S2 70.58 A W2S1 72.77 A W2S2 70.24 A 174 E. Interaksi Tiga Faktor Aktivator-Waktu-Suhu Faktor Rata-rata Klasifikasi A1W1S1 65.12 FG A1W1S2 63.97 FG A2W1S1 72.38 CD A2W1S2 72.26 CD A3W1S1 63.76 FG A3W1S2 63.14 GH A4W1S1 57.63 I A4W1S2 59.79 HI A5W1S1 83.14 A A5W1S2 82.30 AB A6W1S1 81.50 AB A6W1S2 82.03 AB A1W2S1 69.63 DE A1W2S2 74.56 C A2W2S1 78.86 B A2W2S2 67.24 EF A3W2S1 55.96 I A3W2S2 62.31 GH A4W2S1 56.14 I A4W2S2 81.81 AB A5W2S1 82.95 AB A5W2S2 81.09 AB A6W2S1 82.00 AB A6W2S2 83.27 A Keterangan: A1= aktivasi panas W1 = waktu 60 menit A2= aktivasi uap H 2 O W2 = waktu 120 menit A3= aktivasi KOH 0,5M A4= aktivasi KOH 1M S1 = suhu 700 o C A5= aktivasi H 3 PO 4 0,5M S2 = suhu 800 o C A6= aktivasi H 3 PO 4 1M Lampiran 7. Uji BNT Cara Duncan Daya Jerap Iodin Arang Aktif A. Faktor Tunggal Faktor Rata-rata Klasifikasi Keterangan: A1 449.03 B A1= aktivasi panas A2 688.28 A A2= aktivasi uap H 2 O A3 389.59 C A3= aktivasi KOH 0,5M A4 342.31 D A4= aktivasi KOH 1M A5 290.42 E A5= aktivasi H 3 PO 4 0,5M 175 A6 354.66 D A6= aktivasi H 3 PO 4 1M W1 459.72 A W1= waktu 60 menit W2 378.37 B W2= waktu 120 menit S1 401.39 B S1= suhu 700 o C S2 436.71 A S2= suhu 800 o C B. Interaksi Dua Faktor Aktivator-Waktu Faktor Rata-rata Klasifikasi A1W1 623.46 A A2W1 687.38 A A3W1 469.64 B A4W1 325.21 C A5W1 296.70 C A6W1 355.94 C A1W2 274.59 C A2W2 689.17 A A3W2 309.53 C A4W2 359.42 C A5W2 284.14 C A6W2 353.38 C C. Interaksi Dua Faktor Aktivator-Suhu Faktor Rata-rata Klasifikasi A1S1 443.16 C A1S2 454.90 C A2S1 560.88 B A2S2 815.67 A A3S1 382.88 CD A3S2 396.29 CD A4S1 316.28 DE A4S2 368.35 CDE A5S1 316.63 DE A5S2 264.22 E A6S1 388.51 CD A6S2 320.81 DE D. Interaksi Dua Faktor Waktu-Suhu Faktor Rata-rata Klasifikasi W1S1 432.24 AB W1S2 487.20 A W2S1 370.54 B W2S2 386.21 AB E. Interaksi Tiga Faktor Aktivator-Waktu-Suhu 176 Faktor Rata-rata Klasifikasi A1W1S1 546.76 E A1W1S2 700.16 C A2W1S1 616.94 D A2W1S2 757.82 B A3W1S1 459.73 FGH A3W1S2 479.56 FG A4W1S1 323.25 JKL A4W1S2 327.17 JKL A5W1S1 308.49 JKL A5W1S2 284.92 KLM A6W1S1 338.28 JK A6W1S2 373.60 IJ A1W2S1 339.56 JK A1W2S2 209.63 N A2W2S1 504.82 EF A2W2S2 873.53 A A3W2S1 306.04 KL A3W2S2 313.02 JKL A4W2S1 309.32 JKL A4W2S2 409.52 HI A5W2S1 324.77 JKL A5W2S2 243.52 LMN A6W2S1 438.74 GH A6W2S2 268.03 LMN Keterangan: A1= aktivasi panas W1 = waktu 60 menit A2= aktivasi uap H 2 O W2 = waktu 120 menit A3= aktivasi KOH 0,5M A4= aktivasi KOH 1M S1 = suhu 700 o C A5= aktivasi H 3 PO 4 0,5M S2 = suhu 800 o C A6= aktivasi H 3 PO 4 1M Lampiran 8. Uji BNT Cara Duncan Daya Jerap Benzena Arang Aktif A. Faktor Tunggal Faktor Rata-rata Klasifikasi Keterangan: A1 8.33 BC A1= aktivasi panas A2 17.52 A A2= aktivasi uap H 2 O A3 5.37 D A3= aktivasi KOH 0,5M A4 9.88 B A4= aktivasi KOH 1M A5 7.09 C A5= aktivasi H 3 PO 4 0,5M A6 9.67 B A6= aktivasi H 3 PO 4 1M 177 W1 9.01 B W1= waktu 60 menit W2 10.27 A W2= waktu 120 menit S1 9.06 B S1= suhu 700 o C S2 10.23 A S2= suhu 800 o C B. Interaksi Dua Faktor Aktivator-Waktu Faktor Rata-rata Klasifikasi A1W1 8.65 DEF A2W1 15.85 B A3W1 4.74 G A4W1 6.81 EFG A5W1 7.56 EF A6W1 10.48 D A1W2 8.00 DEF A2W2 19.19 A A3W2 6.00 FG A4W2 12.95 C A5W2 6.62 EFG A6W2 8.86 DE C. Interaksi Dua Faktor Aktivator-Suhu Faktor Rata-rata Klasifikasi A1S1 8.44 CD A1S2 8.21 CDE A2S1 15.43 B A2S2 19.61 A A3S1 5.46 E A3S2 5.28 E A4S1 8.67 CD A4S2 11.10 C A5S1 6.98 DE A5S2 7.19 DE A6S1 9.36 CD A6S2 9.98 CD Lampiran 9. Hasil Analisis Probit Asap Cair dan Fraksi-fraksinya a. Asap Cair Confidence Limits for Effective Inhibitor EI 50 95 Confidence Limits Prob konsentr Lower Upper ,01 -2,29821 . . ,02 -1,89201 . . ,03 -1,63429 . . 178 ,04 -1,44041 . . ,05 -1,28271 . . ,06 -1,14848 . . ,07 -1,03078 . . ,08 -,92540 . . ,09 -,82957 . . ,10 -,74135 . . ,15 -,37609 . . ,20 -,08580 . . ,25 ,16325 . . ,30 ,38690 . . ,35 ,59414 . . ,40 ,79080 . . ,45 ,98106 . . ,50 1,16831 . . ,55 1,35556 . . ,60 1,54583 . . ,65 1,74248 . . ,70 1,94973 . . ,75 2,17338 . . ,80 2,42242 . . ,85 2,71272 . . ,90 3,07797 . . ,91 3,16619 . . ,92 3,26203 . . ,93 3,36741 . . ,94 3,48510 . . ,95 3,61933 . . ,96 3,77704 . . ,97 3,97091 . . ,98 4,22863 . . ,99 4,63484 . .

b. Fraksi Air