Pengujian Hipotesis dan Hubungan Kausal Pengujian Model Dengan One-Step Approach Evaluasi Model

47 Keterangan: a Standart Loading diperoleh dari standardized loadimg untuk tiap- tiap indikator yang didapat dari hasil perhitungan komputer. b  j adalah measurement error dari tiap indikator. Measurement error dapat diperoleh dari 1-reliabilitas indikator. Tingkat reliabilitas yang dapat diterima adalah 0,70 , walaupun angka itu bukanlah sebuah ukuran yang “mati”. Artinya bila penelitian yang dilakukan bersifat eksploratori maka nilai dibawah 0,70 pun masih diterima sepanjang disertai dengan alasan-alasan empirik yang terlihat dalam proses eksploratori Variance extrated = j Loading Std Loading Std     2 2 . . Keterangan: a Standard Loading diperoleh dari standardized loading untuk tiap- tiap imdikator yang didapat dari hasil perhitungan komputer. b ε j adalah measurement error tiap-tiap indikator.

3.4.2. Pengujian Hipotesis dan Hubungan Kausal

Pengaruh langsung koefisien jalur diamati dari bobot regresi terstandar, dengan pengujian signifikansi pembanding nilai CR Critical Ratio atau  probability yang sama dengan nilai t hitung. Apabila t hitung lebih besar daripada t tabel berarti signifikan. 48

3.4.3. Pengujian Model Dengan One-Step Approach

Dalam metode SEM, model pengukuran dan model struktur parameter-parameternya di estimasi secara bersama-sama. Cara ini agak mengalami kesulitan dalam memenuhi fit model. One Stop Approach to SEM digunakan apabila model diyakini landasan teori yang kuat serta validitas dan reabilitas yang sangat baik.

3.4.4. Evaluasi Model

Hair et.al, 1998 menjelaskan bahwa confirmatory menunjukkan prosedur yang dirancang untuk mengevaluasi utilitas hipotesis-hipotesis dengan pengujian fit antara model teoritis dan data empiris. Jika model teoritis menggambarkan “good fit” dengan data, maka model dianggap sebagai yang diperkuat. Sebaliknya, suatu model teoritis tidak diperkuat jika teori tersebut mempunyai suatu “poor fit” dengan data. Amos dapat menguji apakah model “good fit” atau “poor fit”. Jadi, “good fit” model yang diuji sangat penting dalam penggunaan structural equation modeling. Pengujian terhadap model yang dikembangkan dengan berbagai kriteria Goodness Of Fit, yakni Chi-square, Probability, RMSEA, GFI, TLI, CFI, AGFI, CMINDF. 1. X 2 – Chi Square Statistic Alat uji yang paling fundamental untuk mengukur overall fit adalah likehood ratio chi-square statistic. Chi-square ini bersifat sangat 49 sensitive terhadap besarnya sampel yang digunakan karena itu bila jumlah sampel adalah cukup besar yaitu lebih dari 200 sampel maka statistic chi-square ini harus didampingi oleh alat uji lainnya. Model yang diuji akan dipandang baik atau memuaskan bila nilai chi- squarenya rendah. Semakin kecil nilai X 2 semakin baik model itu. Dalam pengujiannya ini nilai X 2 yang rendah yang menghasilkan sebuah tingkat signifikansi yang lebih besar dari 0,05 akan mengindikasikan tak adanya perbedaan yang signifikan antara matriks kovarians yang diestimasi. 2. RMSEA-The Rood Mean Square Error of Appoximation Adalah sebuah indeks yang dapat digunakan untuk mengkompensasikan chi-square statistic dalam sampel yang besar nilai RMSEA menunjukkan goodness-of-fit yang dapat diharapkan bila model diestimasi dalam populasi. Nilai RMSEA yang lebih kecil atau sama dengan 0,08 merupakan indeks untuk dapat diterimanya model yang menunjukkan sebuah close-fit dari model ini berdasarkan degree of freedom. 3. GFI-Goodness of Fit Index Indeks kesesuaian fit index ini akan menghitung proporsi tertimbang dari varians dalam matriks kovarians sampel yang dijelaskan oleh matriks kovarians populasi yang terestimasikan. GFI adalah sebuah ukuran non-statistical yang mempunyai rentang nilai antara 0 poor 50 fit sampai dengan 1,0 perfect fit nilai yang tinggi dalam indeks ini menunjukkan sebuah “better fit”. 4. AGFI-Adjusted Goodness of fit indeks Adalah analog dari R 2 dalam regresi berganda. Fit index ini dapat didjust terhadap degree of freedom yang tersedia untuk menguji diterima tidaknya model. Tingkat penerimaan yang direkomendasikan adalah bila AGFI mempunyai nilai sama dengan atau lebih besar dari 0,09 perlu diketahui bahwa baik GFI maupun AGFI adalah kriteria yang diperhitungkan proporsi tertimbang dari varians dalam sebuah matriks kovarians sampel. 5. CMIN DF The minimum sample discrepancy function CMN dibagi dengan degree of freedom-nya akan menghasilkan indeks CMIN DF, yang umumnya dilaporkan oleh para peneliti sebagai salah satu indikator untuk mengukur tingkat fit-nya sebuah model. 6. TLI-Tucker Lewis Index TLI adalah sebuah alternatif incremental fit index yang membandingkan sebuah model yang diuji terhadap sebuah baseline model. Nilai yang direkomendasikan sebagai acuan untuk diterimanya sebuah model adalah penerimaan 0,95 dan nilai yang sangat mendekati 1 menunjukkan a very good fit. 51 7. CFI-Comparative Fit Index Besaran indeks ini adalah pada rentang nilai sebesar 0-1, dimana semakin mendekati 1 mengindikasikan tingkat fit yang paling tinggi a very good fit. Nilai yang direkomendasikan adalah CFI 0,95. Tabel 3.1 Goodness of Fit Indices GOODNESS OF FIT INDEX KETERANGAN CUT-OFF VALUE X 2 -Chi-square Menguji apakah covariance populasi yang diestimasi sama dengan covariance sample [apakah model sesuai dengan data]. Diharapakan Kecil, 1 s.d 5, atau paling baik diantara 1 dan 2. Probability Uji signifikansi terhadap perbedaan matriks covariance data dan matriks covariance yang diestimasi. Minimum 0,1 atau 0,2, atau ≥ 0,05 RMSEA Mengkompensasi kelemahan Chi- Square pada Sampel. ≤ 0,08 GFI Menghitung proporsi tertimbang varians dalam matriks sample yang dijelasakan oleh matriks covariance populasi yang diestimasi [analog dengan R 2 dalam regresi berganda] ≥ 0,90 AGFI GFI yang disesuaikan dalam DF. ≥ 0,90 CMINDDF Kesesuaian antara data dan model. ≤ 2,00 TLI Pembandingan antara model yang diuji terhadap baseline model. ≥ 0.95 CFI Uji kelayakan model yang tidak sensitif tehadap besarnya sample dan kerumitan model ≥ 0,94 Sumber : Hair. et. al. 1998

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

4.1. Deskripsi Karakteristik Responden

Data mengenai keadaan responden dapat diketahui melalui jawaban responden dari pernyataan-pernyataan yang diajukan di dalam kuesioner yang telah diberikan kepada konsumen masyarakat di Surabaya yang pernah melihat iklan Sabun Pembersih Dove Women di media cetak serta berminat membeli Sabun Pembersih Dove. Dari jawaban-jawaban tersebut diketahui hal- hal seperti di bawah ini. 1. Deskripsi Karakteristik Responden Berdasarkan Jenis Kelamin Berdasarkan hasil penyebaran kuesioner kepada 112 orang responden diperoleh gambaran berdasar jenis kelamin adalah sebagai berikut : Tabel 4.1. Karakteristik Responden Berdasarkan Jenis Kelamin No Jenis Kelamin Jumlah Prosentase 1 Laki-laki 47 42,0 2 Perempuan 65 58,0 Total 112 100 Sumber: Hasil Penyebaran Kuisoner Berdasarkan tabel diatas diketahui bahwa sebagian besar responden dalam penelitian ini adalah mereka yang berjenis perempuan yaitu sebanyak 65 orang atau sebesar 58,0 , sisanya responden berjenis laki-laki sebanyak 47 orang atau sebesar 42,0 . 52