Uji Multikolinieritas Uji Heteroskedastisitas Uji t

85 Gambar 4.6 Grafik Histogram Pada Gambar 4.6 menjelaskan histogram terlihat bahwa garis dan histogramnya melintang dari kiri ke kanan. Gambar ini menunjukkan bahwa data yang telah diolah sudah terdistribusi secara normal.

b. Uji Multikolinieritas

Prasyarat yang harus terpenuhi dalam model regresi adalah tidak adanya multikolinieritas. Ada beberapa metode pengujian yang bisa digunakan, diantaranya dengan melihat nilai variance inflation factor VIF pada model regresi, dengan membandingkan nilai koefisien determinasi individual r 2 dengan nilai determinasi secara serentak R 2 dan dengan melihat nilai eigenvalue dan condition index. Pada pembahasan ini akan dilakukan uji multikolinieritas dengan Universitas Sumatera Utara 86 melihat nilai variance inflation factor VIF. Menurut Priyatno 2009, pada umumnya jika VIF lebih besar dari 5, maka variabel tersebut mempunyai persoalan multikolinieritas dengan variabel bebas lainnya. Hasil uji multikolinieritas dapat dilihat pada gambar di bawah ini : Tabel 4.8 Hasil Uji Multikolinieritas Model Collinearity Statistics Tolerance VIF Pendidikan dan pelatihan 1.000 1.000 Sumber : Hasil Olah Data SPSS 2016 Dari hasil di atas dapat diketahui nilai variance inflation factor VIF variabel pendidikan dan pelatihan adalah lebih kecil dari 5, sehingga dapat disimpulkan antar variabel independen tidak terjadi persoalan multikolinieritas.

c. Uji Heteroskedastisitas

Uji heteroskedastisitas bertujuan untuk menguji apakah data dalam model regresi terjadi ketidaksamaan variance dari residual satu pengamatan ke pengamatan lain. Jika variance dari residual satu pengamatan ke pengamatan lain tetap, maka disebut homoskedastisitas dan jika berbeda disebut heteroskedastisitas. Model regresi yang baik adalah yang homoskedastisitas atau tidak terjadi heteroskedastisitas Nugroho, 2005:62. Adapun gambar Scatterplot pada uji heteroskedastitias adalah sebagai berkut: Universitas Sumatera Utara 87 Gambar 4.7. Uji Heteroskedastisitas Berdasarkan Gambar 4.7 di atas dapat terlihat bahwa distribusi data tidak teratur dan tidak membentuk pola tertentu, serta tersebar di atas dan di bawah angka 0 pada sumbu Y, sehingga dapat disimpulkan bahwa pada model regresi ini tidak terjadi masalah heteroskedastisitas.

4.1.4.3 Uji Hipotesis

a. Uji t

Uji t digunakan untuk menguji apakah hubungan yang terjadi antara variabel independen pendidikan dan pelatihan dengan variable dependen kinerja pegawai berlaku untuk populasi dapat digeneralisasikan. Koefisien korelasi sederhana uji t dapat dilihat pada tabel di bawah ini. Universitas Sumatera Utara 88 Tabel 4.9 Hasil Uji t Model Unstandardized Coefficients Standardized Coefficients t Sig. B Std. Error Beta Constant 25.087 4.700 5.338 .000 Kinerja Pegawai .284 .128 .331 2.221 .032 a. Dependent Variabel: Pendidikan dan pelatihan Kerja Sumber : Hasil Olah Data SPSS 2016 Dari hasil uji statistik secara parsial diperoleh nilai t hitung untuk variabel kinerja pegawai sebesar 2,221 dan t tabel n=42 adalah 2,022, karena nilai t hitung lebih besar dari t tabel 2,221 2,022 maka H ditolak dan Ha diterima. Dengan demiki an hipotesis penelitian yang berbunyi: “Terdapat pengaruh yang positif dan signifikan antara pendidikan dan pelatihan kerja terhadap kinerja karyawan pada PT.Bank Sumut Cabang Simalingkar Medan” diterima. Berdasarkan Tabel 4.12 dapat dilihat persamaan analisis regresi sederhana pada penelitian ini adalah : Y = 25,087 + 0,284X Dari rumus tersebut dapat dijelaskan sebagai berikut : angka konstanta sebesar 25,087 artinya jika pendidikan dan pelatihan kerja memiliki nilai 0, maka kinerja pegawai nilainya sebesar 25,087. Sedangkan nilai koefisien regresi variabel X sebesar 0,284 menunjukkan bahwa jika pendidikan dan pelatihan mengalami peningkatan sebesar 1 maka kinerja pegawai akan mengalami peningkatan sebesar 0,284. Koefisien bernilai positif artinya terdapat hubungan yang positif antara pendidikan dan pelatihan kerja terhadap kinerja pegawai pada PT.Bank Sumut Cabang Simalingkar Medan. Universitas Sumatera Utara 89

b. Uji Koefisien Determinasi R