Ketinggian Maksimum Gunung di Bumi

8.23 Ketinggian Maksimum Gunung di Bumi

Gunung tertinggi di dunia adalah Mount Everest dengan ketinggian hampir mencapai 10 km dari permukaan laut (Gambar 8.29). Pertanyaan yang menarik adalah mengapa tidak ada gunung yang mencapai ketinggian berpuluh-puluh kilometer? Dengan perkataan lain, dapatkah sebuah gunung mencapai ketinggian beberapa puluh kilometer? Ternyata pembentukan gunung merupakan kompotisi antara kekuatan batuan penyusun gunung dengan gaya gravitasi bumi. Kompetisi tersebut melahirkan ketinggian maksimum gunung yang dapat ada di bumi hanya sekitar 10 km. Tidak ada gunung yang bisa stabil dengan ketinggian di atas 10 km! Fenomena ini serupa dengan naiknya air pada pipa kapiler yang terjadi akibat kompetisi antara gata gravitasi bumi dan tegangan permukaan. Kompetisi tersebut melahirkan ketinggian maksimum naiknya air dalam pipa kapiler.

Pada bagian ini kita memprediksi secara sederhana ketinggian maksimum gunung yang bisa stabil di permukaan bumi. Kita asumsikan bahwa bahan utama batuan penyusun gunung adalah sejenis silika. Silika adalah material utama pembentuk kerak bumi. Silika memiliki rumus

kimia SiO 2 . Walaupun materi penyusun kerak bumi banyak sekali, namun yang dominan adalah silika. Walaupun asumsi ini berlebihan, namun setidaknya hasil yang diperoleh tidak terlalu jauh dari yang sebenarnya.

Karena tujuan kita di sini juga melakukan perkiraan, bukan menentukan nilai eksak. Asumsi ini semata-mata dilakukan untuk memudahkan pembahasan. Walaupun yang kita bahas adalah gunung dengan bentuk geometri yang bervariaso (umumnya menyerupai kerucut), namun dalam prediksi ini kita akan mencari ketinggian maksium sebuah balok silika yang bisa berdiri stabil seperti siilutrasikan pada Gambar 8.29.

Gambar 8.29 Mount Everest yang merupakan gunung tertinggi di dunia. Ketinggian puncak tertinggi mencapai 8.850 m (famouswonders.com).

Seperti diperlihatkan dalam Gambar 8.30 balok yang dianalogikan dengan gunung memiliki ketinggian H. Balok tersebut dibagi atas sejumlah kubus dengan panjang sisi s. Satu kubus berisi satu molekul silika. Jumlah kubus pada masing-masing sisi adalah p, q, dan r. Dengan demikian jumlah molekul silika penyusun balok adalah

N  pqr (8.98) Jika M SiO2 adalah massa satu molekul silika maka mass balok adalah

M  pqrM SiO 2 (8.99)

Molekul silika yang berada di daras balok menahan beban balok sebesar Mg. Makin tinggi balok maka makin besar beban yang ditahan

r sel

ss

q sel

p sel

Gmbar 8.30 Gunung dimodelkan sebagai balok silika yang berada di atas dasar silika. Ketinggian balok adalah H (sama dengan tinggi gunung). Balok dibagi atas sejumlah kubus dengan sisi s. Jumlah kubus pada masing-masing sisi balok adalah p, q, dan r. Tiap kubus diisi dengan satu molekul silika sehingga jumlah molekul sisika penyusun kubus adalah pqr.

Misalkan pada ketinggian H balok masih berada dalam keadaan stabil. Misalkan kita tambah lagi ketinggian sebesar satu kubus kecil, yaitu s dan terjadi perubahan dasar balok menjadi plastis maka ketinggian

H merupakan ketinggian maksimum balok. Energi yang diperlukan untuk menambah ketinggian balok sebesar s adalah

U  Mgs (8.100) Energi ini persis sama dengan energi yang diperlukan untuk mengubah

satu lapisan molekul silika di dasar balok dari wujud padat ke wujud plastis. Jumlah molekul silika pada satu lapisan di dasar balok adalah pq. Energi yang diperlukan untuk mengubah satu molekul dari fase padat ke fase plastis kita nyatakan dengan  p . Dengan demikian energi yang diperlukan untuk mengubah silika satu lapisan di dasar balok dari fase padat ke plastis adalah

E  pq  p (8.101)

Dengan menyamakan energi pada persamaan (8.100) dan (8.101) dan menggunakan persamaan (8.99) kita peroleh

pqrM SiO 2 gs  pq  p

M SiO 2 g ( rs )   p (8.102) Jika kita perhatikan Gambar 8.30 jelas bahwa H = rs. Dengan demikian,

ketinggian maksimum balok silika yang diijinkan adalah

H  (8.103)