sr4 = Table[ q
α ∗ 35034375 pi4[[ ]]
− 2775 , { , 1, Length[pi4]}];
rj4 = Table[ 35000
∗ sr4[[ ]] q
α , { , 1, Length[sr4]}];
nj4 = Table[ rj4[[ ]]
35034375 , { , 1, Length[sr4]}];
TableForm[{pi4, rj4, nj4}, TableDirections → {Row, Column},TableHeadings
→ {{pi4, rj4, nj4}, Automatic}]; ListPlot[{pi4, nj4}
, AxesOrigin → {2730,0}, Frame → True, FrameLabel
→ {Harga Premi π , Jumlah Peserta n }, AxesStyle → Directive[Black, 10], GridLines → Automatic]
• Kelas ke-5
pi5 = Table[ , { , 4251,4940,0.1}]; q
α = 0.8416;
sr5 = Table[ q
α ∗ 56187500 pi5[[ ]]
− 4250 , { , 1, Length[pi5]}];
rj5 = Table[ 31000
∗ sr5[[ ]] q
α , { , 1, Length[sr5]}];
nj5 = Table[ rj5[[ ]]
56187500 , { , 1, Length[sr5]}];
TableForm[{pi5, rj5, nj5}, TableDirections → {Row, Column},TableHeadings
→ {{pi5, rj5, nj5}, Automatic}];
ListPlot[{pi5, nj5}
, AxesOrigin → {4250,0}, Frame → True, FrameLabel
→ {Harga Premi π , Jumlah Peserta n }, AxesStyle → Directive[Black, 10], GridLines → Automatic]
b. Program Penentuan Harga Premi dengan Pendekatan Kedua • Kelas ke-1
pi1 = Table[i, {i, 105.1, 120, 0.01}]; q
α = 0.866025;
sr1 = Table[ q
α ∗ 214475 pi1[[ ]]
− 105 , { , 1, Length[pi1]}];
rj1 = Table[ 51000
∗ sr1[[ ]] q
α , { , 1, Length[sr1]}];
nj1 = Table[ rj1[[ ]]
214475 , { , 1, Length[sr1]}];
TableForm[{pi1, rj1, nj1}, TableDirections → {Row, Column},TableHeadings
→ {{pi1, rj1, nj1}, Automatic}]; ListPlot[{pi1, nj1}
, AxesOrigin → {105,0}, Frame → True, FrameLabel
→ {Harga Premi π , Jumlah Peserta n }, AxesStyle → Directive[Black, 10], GridLines → Automatic]
• Kelas ke-2
pi2 = Table[ , { , 1001,1110,0.1}];
q α = 0.866025;
sr2 = Table[ q
α ∗ 9020000 pi2[[ ]]
− 1000 , { , 1, Length[pi2]}];
rj2 = Table[ 48000
∗ sr2[[ ]] q
α , { , 1, Length[sr2]}];
nj2 = Table[ rj2[[ ]]
9020000 , { , 1, Length[rj2]}];
TableForm[{pi2, rj2, nj2}, TableDirections → {Row, Column},TableHeadings
→ {{pi2, rj2, nj2}, Automatic}]; ListPlot[{pi2, nj2}
, AxesOrigin → {1000,0}, Frame → True, FrameLabel
→ {Harga Premi π , Jumlah Peserta n }, AxesStyle → Directive[Black, 10], GridLines → Automatic]
• Kelas ke-3
pi3 = Table[ , { , 2731,3080,0.1}]; q
α = 0.866025;
sr3 = Table[ q
α ∗ 28058100 pi3[[ ]]
− 2730 , { , 1, Length[pi3]}];
rj3 = Table[ 38000
∗ sr3[[ ]] q
α , { , 1, Length[sr3]}];
nj3 = Table[ rj3[[ ]]
28058100 , { , 1, Length[sr3]}];
TableForm[{pi3, rj3, nj3}, TableDirections → {Row, Column},TableHeadings
→ {{pi3, rj3, nj3}, Automatic}];
ListPlot[{pi3, nj3}
, AxesOrigin → {2730,0}, Frame → True, FrameLabel
→ {Harga Premi π , Jumlah Peserta n }, AxesStyle → Directive[Black, 10], GridLines → Automatic]
• Kelas ke-4
pi4 = Table[ , { , 2776,3275,0.1}]; q
α = 0.866025;
sr4 = Table[ q
α ∗ 35034375 pi4[[ ]]
− 2775 , { , 1, Length[pi4]}];
rj4 = Table[ 35000
∗ sr4[[ ]] q
α , { , 1, Length[sr4]}];
nj4 = Table[ rj4[[ ]]
35034375 , { , 1, Length[sr4]}];
TableForm[{pi4, rj4, nj4}, TableDirections → {Row, Column},TableHeadings
→ {{pi4, rj4, nj4}, Automatic}]; ListPlot[{pi4, nj4}
, AxesOrigin → {2730,0}, Frame → True, FrameLabel
→ {Harga Premi π , Jumlah Peserta n }, AxesStyle → Directive[Black, 10], GridLines → Automatic]
• Kelas ke-5
pi5 = Table[ , { , 4251,4940,0.1}]; q
α = 0.866025;
sr5 = Table[ q
α ∗ 56187500 pi5[[ ]]
− 4250 , { , 1, Length[pi5]}];