Nilai akurasi terhadap data

Tabel 5.Nilai akurasi terhadap data

training dengan confussion matrix

5. KESIMPULAN

Decision Naive

SVM

Neural

Tree Bayes

Network

Penerapan algoritma Decision Tree,

Naive Bayes, SVM, dan Neural Network pada kasus prediksi kenaikan volume rata-

Tabel 6. Nilai akurasi terhadap data

rata perikanan tangkap cukup baik.

testing dengan confussion matrix

Algoritma Neural Network mempunyai nilai

Decision Naive

SVM

Neural

akurasi tertinggi dalam membuat klasifikasi

Tree Bayes

Network

pada kasus tersebut. Tetapi hasil klasifikasi

masih tergolong kategori fair classification.

Seminar Nasional Teknologi Informasi dan Komunikasi Terapan (SEMANTIK) 2015

121

Id paper: SM089

Penelitian selanjutnya dapat menerapkan [11] D. L. Olson and D. Delen, Advances attribute selection untuk menyeleksi atribut

Data Mining Techniques. Berlin, yang mempunyai nilai korelasi tinggi

German: Springer, 2008. terhadap output class sehingga diharapkan

[12] F. Gorunescu, Data Mining Concepts, dapat meningkatkan nilai akurasi hasil

Models and Techniques. Berlin: klasifikasi.

Springer, 2011. [13] G. J. Myatt, Making Sense of Data: A

6. DAFTAR PUSTAKA

Practical Guide to Exploratory Data [1] D. G. Bengen, "Ekosistem dan

Analysis and Data Mining. New Jersey, Sumberdaya Pesisir dan Laut serta

Canada: John Wiley & Sons, 2007. Pengelolaan Secara Terpadu dan

[14] Kusrini and E. T. Lutfi, Algoritma Data Berkelanjutan,"

Mining, T. A. Prabawati, Ed. Pengelolaan Wilayah Pesisir Terpadu,

in

Pelatihan

Yogyakarta, Indonesia: Andi Offset, Bogor, 2001, pp. 28-55.

2009.

[2] R. Noviyanti, "Kondisi Perikanan [15] I. Ntoutsi, N. Pelekis, and Y. Tangkap di Wilayah Pengelolaan

Theodoridis, "Pattern Comparison Data Perikanan (WPP) Indonesia,"

Mining: A Survey," in Research and Seminar FMIPA-UT 2011, Jakarta,

in

Trends in Data Mining Technologies 2011

and Applications, K. Klinger, et al., Eds. [3] A. Samosir, "Sektor Perikanan: PNBP

USA: IDEA Group Publisihing, 2007, yang Terabaikan," 2013.

ch. IV, pp. 86-120. [4] D. T. Larose, Data Mining Methods and

[16] X. Wu and V. Kumar, The Top Ten Models. New Jersey: Wiley, 2006.

Algorithms in Data Mining. New York: [5] C. Yao Lo, C. I Hou, and Y. Yun Pai,

CRC Press, 2009.

"An Intelligent Demand Forecasting [17] C. Vercellis, Business Intelligence, Data Model with Back Propagation Neural

Mining and Optimization for Decision Network for Fish Product," Journal of

Making. United Kingdom: John Wiley Applied Sciences, Engineering and

& Sons, 2009.

Technology, vol. III, no. 5, pp. 447-455, [18] O. Maimon and L. Rokach, Data Mining May 2011.

and Knowledge Discovery Handbook. [6] D. Monintja and R. Yusfiandayani,

New York: Springer, 2010. "Pemanfaatan Sumber Daya Pesisir

[19] H. Xue, Q. Yang, and S. C. Chen, dalam Bidang Perikanan Tangkap," in

"SVM: Support Vector Machines," in Pelatihan Pengelolaan Wilayah Pesisir

The Top Ten Algorithms in Data Terpadu, Bogor, 2001, pp. 56-65.

Mining, W. Xindong and V. Kumar, [7] H. E. Irianto and I. Soesilo, "Dukungan

Eds. Boca Raton, USA: CRC Press, Teknologi

2009, ch. 3, pp. 37-58. Perikanan," in Seminar Nasional Hari

Penyediaan

Produk

[20] Z. Markov and D. T. Larose, Data Pangan Sedunia, Bogor, 2007.

Mining The Web. New Jersey, Canada: [8] T. Resmiati, S. Diana, and S. Astuty,

John Wiley and Sons, 2007. "Komposisi Jenis Alat Tangkap yang

[21] J. Han and M. Kamber, Data Mining Beroperasi di Perairan Teluk Banten,

Concepts and Techniques 2nd edition. Serang,"

USA: Elseiver, 2006. Laporan Penelitian, 2002.

Universitas

Padjadjaran

[22] M. Bramer, Principles of Data Mining. [9] S. Dua and X. Du, Data Mining and

London: Springer, 2007. Machine Learning in Cybersecurity.

"Expert System United States of Amerika: CRC Press,

[23] S.-H.

Liao,

and Application-a 2011.

Methodologies

decade review from 1995 to 2004," [10] I. H. Witten, E. Frank, and M. A. Hall,

Elsevier, pp. 1-11, 2004. Data

Learning Tools and Techniques 3rd Edition. Burlington: Elsevier, 2011.

Seminar Nasional Teknologi Informasi dan Komunikasi Terapan (SEMANTIK) 2015

Id paper: SM091