Nilai akurasi terhadap data
Tabel 5.Nilai akurasi terhadap data
training dengan confussion matrix
5. KESIMPULAN
Decision Naive
SVM
Neural
Tree Bayes
Network
Penerapan algoritma Decision Tree,
Naive Bayes, SVM, dan Neural Network pada kasus prediksi kenaikan volume rata-
Tabel 6. Nilai akurasi terhadap data
rata perikanan tangkap cukup baik.
testing dengan confussion matrix
Algoritma Neural Network mempunyai nilai
Decision Naive
SVM
Neural
akurasi tertinggi dalam membuat klasifikasi
Tree Bayes
Network
pada kasus tersebut. Tetapi hasil klasifikasi
masih tergolong kategori fair classification.
Seminar Nasional Teknologi Informasi dan Komunikasi Terapan (SEMANTIK) 2015
121
Id paper: SM089
Penelitian selanjutnya dapat menerapkan [11] D. L. Olson and D. Delen, Advances attribute selection untuk menyeleksi atribut
Data Mining Techniques. Berlin, yang mempunyai nilai korelasi tinggi
German: Springer, 2008. terhadap output class sehingga diharapkan
[12] F. Gorunescu, Data Mining Concepts, dapat meningkatkan nilai akurasi hasil
Models and Techniques. Berlin: klasifikasi.
Springer, 2011. [13] G. J. Myatt, Making Sense of Data: A
6. DAFTAR PUSTAKA
Practical Guide to Exploratory Data [1] D. G. Bengen, "Ekosistem dan
Analysis and Data Mining. New Jersey, Sumberdaya Pesisir dan Laut serta
Canada: John Wiley & Sons, 2007. Pengelolaan Secara Terpadu dan
[14] Kusrini and E. T. Lutfi, Algoritma Data Berkelanjutan,"
Mining, T. A. Prabawati, Ed. Pengelolaan Wilayah Pesisir Terpadu,
in
Pelatihan
Yogyakarta, Indonesia: Andi Offset, Bogor, 2001, pp. 28-55.
2009.
[2] R. Noviyanti, "Kondisi Perikanan [15] I. Ntoutsi, N. Pelekis, and Y. Tangkap di Wilayah Pengelolaan
Theodoridis, "Pattern Comparison Data Perikanan (WPP) Indonesia,"
Mining: A Survey," in Research and Seminar FMIPA-UT 2011, Jakarta,
in
Trends in Data Mining Technologies 2011
and Applications, K. Klinger, et al., Eds. [3] A. Samosir, "Sektor Perikanan: PNBP
USA: IDEA Group Publisihing, 2007, yang Terabaikan," 2013.
ch. IV, pp. 86-120. [4] D. T. Larose, Data Mining Methods and
[16] X. Wu and V. Kumar, The Top Ten Models. New Jersey: Wiley, 2006.
Algorithms in Data Mining. New York: [5] C. Yao Lo, C. I Hou, and Y. Yun Pai,
CRC Press, 2009.
"An Intelligent Demand Forecasting [17] C. Vercellis, Business Intelligence, Data Model with Back Propagation Neural
Mining and Optimization for Decision Network for Fish Product," Journal of
Making. United Kingdom: John Wiley Applied Sciences, Engineering and
& Sons, 2009.
Technology, vol. III, no. 5, pp. 447-455, [18] O. Maimon and L. Rokach, Data Mining May 2011.
and Knowledge Discovery Handbook. [6] D. Monintja and R. Yusfiandayani,
New York: Springer, 2010. "Pemanfaatan Sumber Daya Pesisir
[19] H. Xue, Q. Yang, and S. C. Chen, dalam Bidang Perikanan Tangkap," in
"SVM: Support Vector Machines," in Pelatihan Pengelolaan Wilayah Pesisir
The Top Ten Algorithms in Data Terpadu, Bogor, 2001, pp. 56-65.
Mining, W. Xindong and V. Kumar, [7] H. E. Irianto and I. Soesilo, "Dukungan
Eds. Boca Raton, USA: CRC Press, Teknologi
2009, ch. 3, pp. 37-58. Perikanan," in Seminar Nasional Hari
Penyediaan
Produk
[20] Z. Markov and D. T. Larose, Data Pangan Sedunia, Bogor, 2007.
Mining The Web. New Jersey, Canada: [8] T. Resmiati, S. Diana, and S. Astuty,
John Wiley and Sons, 2007. "Komposisi Jenis Alat Tangkap yang
[21] J. Han and M. Kamber, Data Mining Beroperasi di Perairan Teluk Banten,
Concepts and Techniques 2nd edition. Serang,"
USA: Elseiver, 2006. Laporan Penelitian, 2002.
Universitas
Padjadjaran
[22] M. Bramer, Principles of Data Mining. [9] S. Dua and X. Du, Data Mining and
London: Springer, 2007. Machine Learning in Cybersecurity.
"Expert System United States of Amerika: CRC Press,
[23] S.-H.
Liao,
and Application-a 2011.
Methodologies
decade review from 1995 to 2004," [10] I. H. Witten, E. Frank, and M. A. Hall,
Elsevier, pp. 1-11, 2004. Data
Learning Tools and Techniques 3rd Edition. Burlington: Elsevier, 2011.
Seminar Nasional Teknologi Informasi dan Komunikasi Terapan (SEMANTIK) 2015
Id paper: SM091