Saran Penelitian Lanjutan Impact of world oil price shock on domestic rice price (cointegration analysis)
[BPS] Badan Pusat Statistik. 1969-2011. Struktur Ongkos Usahatani Tanaman Pangan 1969.
Jakarta : BPS.
_________________. 2009. Indikator Pembangunan Pertanian dan Perdesaan-
Karakteristik Sosial Ekonomi Petani Padi [ Proposal RPTP TA. 2010].
Jakarta : Pusat Sosial Ekonomi dan Kebijakan Pertanian, Badan Penelitian dan Pengembangan Pertanian, Departemen Pertanian.
_________________. 2011. Pendekatan Beberapa Indikator Utama Sosial-
Ekonomi Indonesia [Katalog BPS 3101015]. Jakarta : BPS.
_________________
. 2011. Tanaman pangan : tabel luas panen, produktivitas, produksi
tanaman padi
Provinsi Indonesia
tahun 1983-2011.
http:www.bps.go.idtnmn_pgn.php?kat=3 [7 Jan 2012].
Baffes J, Bruce G. 2003. The transmission of world commodity prices to domestic markets under policy reforms in developing countries. Journal of Economic
Policy Return 63 : 159-180.
Barrett CB. 2005. Spatial Market Integration, The New Palgrave Dictionnary of Economics
. Ed ke-2. London : Palgrave Macmillan, Forthcoming. Bernal L, Dawn DT, Maria LL. 2003. An empirical analysis of market integration
and efficiency for U.S. fresh tomato markets. Journal of Agricultural Resource of Economics
283 : 435-450. Blanchard OJ, Jordi G. 2008. The Macroeconimic Effects of Oil Price Shocks :
Why are The
2000’s Show Different from The 1970’s? [Economic Working Papers 1045]. Universitat Pompeu Fabra, Department of Economics and
Business. Borensztein et al. 1998. How does foreign direct investment accelerate economic
growth?. Journal of International Economics 451 : 114-135. Brown SPA, Yucel MK, Balke NS. 2002. Oil Price Shocks and U.S. Economic
Activity. An International Perspective
[Discussion Paper, July 2010].
Washington, DC. 20036. [Bulog] Badan Urusan Logistik. 2006. Statistik Perkembangan Harga Beras
Medium Domestik dan Dunia. Biro Analisa Harga dan Pasar . Jakarta :
Bulog.
Caves DW, Christensen LR, Diewert WE. 1982. Multilateral comparisons of output, input and productivity using superlative index numbers. Economics
Journal 92365 : 73-87.
Chambers MJ, Bailey RE. 1996. A theory of commodity price fluctuations. The Journal of Political Economy
1045 : 924-957. Christensen LR. 1975. Concept and measurement of agricultural productivity.
American Journal of Agricultural Economics 575 : 910-915.
Cody BJ, Mills LO. 1991. The role of commodity prices in formulating monetary policy. The Review of Economics and Statistics 732 : 358-365.
Cororaton CB. 2002. Total Factor Productivity in The Philippines [Discussion Paper]. No.2002-1.
Dawe D. 2001. How far down the path to free trade? the importance of rice price stabilization in developing Asia. Food Policy 262 : 163-175.
Deaton A, Laroque G. 1992. On the behavior of commodity prices. Review of Economic Studies
591 : 1-23. Diewert WE. 1980. Capital and the theory of productivity measurement.
American Economic Review 702 : 259-268.
[ Ditjen MIGAS] Direktorat Jenderal Minyak Bumi dan Gas. 2011. Statistik
minyak bumi.
http:prokum.esdm.go.idPublikasiStatistikStatistik20Minyak20Bumi.pdf
[ 15 Des 2012].
Enders W. 2004. Applied Econometric Time Series. J. Wiley. Engle RF, Granger CWJ. 1987. Co-integration and error correction :
representation, estimation, and testing, econometrica 552 : 251-276. Fackler P, B Goodwin. 2002. Spatial price analysis. Di dalam: B Gardner, G
Rausser, editor. Handbook of Agricultural Economics. Vol. 1B. Amsterdam: Elsevier.
Falcon WC, Monke E. 1991. International trade in rice. Food Research Institute Studies
173: 271-306. Favero CA. 2001. Applied macroeconometrics. Di dalam: Banka MP, notulen.
Siena SpA 313-2002: 559-563. Felipe J. 1997. Total Factor Productivity Growth in East Asia : a Critical Survey.
Manila, Philippines: Asian Development Bank. Firdaus et al. 2008. Swasembada Beras dari Masa ke Masa : Telaah Efektivitas
Kebijakan dan Perumusan Strategi Nasional . Bogor: IPB Press.
Furlong F, Ingenito R. 1996. Commodity prices and inflation. Federal Reserve Bank of San Francisco FRBSF Economic Review
No. 2 : 27-47. Harianto. 2001. Pendapatan, Harga dan Konsumsi Beras. Jakarta : LPEM,
Fakultas Ekonomi Universitas Indonesia. Hartati ES. 2004. Analisis dampak pergerakan nilai tukar terhadap inflasi di
Indonesia : pendekatan exchange rate pass-through [Tesis]. Bogor : Sekolah Pascasarjana, Institut Pertanian Bogor.
[ IEA] International Energy Agency. 2005. IEA Geothermal Energy Annual Report
2005 . Implementing Agreement for Cooperation in Geothermal Research and
Technology. Irawan A. 2004. Integrasi Pasar Beras Indonesia. Jakarta : Direktorat Riset
Ekonomi dan Kebijakan Moneter, bagian Studi Sektor riil Bank Indonesia. Jantan MD, Sahlan R. Total factor productivity an empirical study of selected
districts in Malaysia [Tesis]. Malaysia : Faculty of Economics, Universiti Utara Malaysia.
Kang PL, Brian. Structure and Conduct of The World Rice Market [Selected
Paper Prepared for Presentation at The Southern Agricultural Economics Association Annual Meeting January 31-February 3, 2009]. Georgia, Atlanta
Kogel T. 2003. Youth Dependency and Total Factor Productivity. Rostock, Germany: Konrad-Zuse-Srasse 1, D-18057.
Hidayat NK. 2012. Dampak perubahan harga beras dunia terhadap kesejahteraan masyarakat Indonesia pada berbagai kondisi transmisi harga dan kebijakan
domestik [Tesis]. Bogor : Sekolah Pascasarjana, Institut Pertanian Bogor.
Majardi F. 2000. Dampak Pergerakan Nilai Tukar Rupiah terhadap Laju Inflasi di Indonesia
[Makalah Bank Indonesia]. Jakarta: Bank Indonesia.
McCallum. 1989. Real Business Cycle Models in Modern Business Cycle Theory. RJ Barro, editor. Cambridge, MA: Harvard University Press.
Meyer J, Taubadel. 2004. Asymmetric price transmission: a survey. Journal of Agricultural Economics
553: 581-611.
Mondi A, Chung MK, Won JK. 2010. Oil shocks and the world rice market. puzzle : a structural VAR analysis. Korea and The World Economy. 122 :
281-325. Muwanga GS, DL Snyder. 1997. Market intergration and the law of one price:
case study of selected feeder cattle markets. Economic Research Institute Study Paper 97-11
. Utah: Utah State University. Nicholson W. 2000. Mikroekonomi Intermediate dan Aplikasinya. Ed ke-8.
Jakarta : Penerbit Erlangga. Ravallion M. 1986. Testing Market Integration. American Journal of Agricultural
Economics . 681:102-109.
Rifin A. 2005. The export tax and I
ndonesia‟s crude palm oil export [Tesis].
Japan: International University of Japan. Simatupang P. 1996. Faktor-faktor yang mempengaruhi produktivitas total faktor
produksi usahatani padi sawah di Indonesia. Makalah Seminar Nasional Peningkatan Produktivitas Pertanian 1996
, Kerjasama Departemen pertanian dengan Dewan Produktivitas Nasional
. Jakarta: Departemen Pertanian.
Simatupang P. 2000. Pandangan skeptis terhadap kebijakan harga dasar gabah. Makalah disampaikan pada Diskusi Round Table “Kebijakan Harga Gabah
di Era Perdagangan Bebas”. Jakarta: Badan Urusan Ketahanan Pangan, Departemen Pertanian.
Sims C. 1972. Money, income and causality. American Economic Review 624: 540-552.
Siregar H. 2002. Empirical evaluation of rival theories of the business cycle
aplicaton of structural VAR models to New Zealand economy. Ph.D. [Tesis]. Canterbury: Lincoln University.
Sitepu RK. 2002. Dampak kebijakan ekonomi dan liberalisasi perdagangan
terhadap penawaran dan permintaan beras di Indonesia [Tesis]. Bogor: Sekolah Pascasarjana, Institut Pertanian Bogor.
Supriyanto H. 2002. Dekomposisi dan Dinamika Sumber-Sumber Pertumbuhan Industri Kecil dan Rumah Tangga di Indonesia : Analisis “Total Factor
Productivity ”.
Svensson LEO. 2000. Open economy inflation targetting. Journal of Internasional Economics
501 : 155-3. Syahputra HD. 2009. Prediksi harga minyak mentah dunia untuk lima tahun
mendatang dan dampaknya terhadap anggaran pendapatan dan belanja negara Indonesia [Tesis]. Bandung: Departemen Administrasi Bisnis, Institut
Teknologi Bandung.
Tomek WG. 2000. Commodity prices revisited. Staff Paper 2000-05. New York: Department of Applied Economics and Management, Cornell University.
[ USDA] The U.S. Departments of Agriculture. 2011. Regional Rice Imports,
Production, Consumption, and Stocks. United States: United States
Department of Agriculture, Foreign Agricultural Service.
Verbeek M. 2000. A Guide to Modern Econometrics. John Wiley and Sons. [
WTRG Economics].
2011. Oil
Price History
and Analysis
. http:www.wtrg.comprices.htm
[2 Juli 2012].
Lampiran 1 Unit root test tingkat level
Null Hypothesis: HBDOM has a unit root Exogenous: Constant
Lag Length: 0 Automatic based on SIC, MAXLAG=9 t-Statistic
Prob. Augmented Dickey-Fuller test statistic
-2.134524 0.2327
Test critical values: 1 level
-3.596616 5 level
-2.933158 10 level
-2.604867 MacKinnon 1996 one-sided p-values.
Null Hypothesis: PB has a unit root Exogenous: Constant
Lag Length: 0 Automatic based on SIC, MAXLAG=9 t-Statistic
Prob. Augmented Dickey-Fuller test statistic
-1.618171 0.4646
Test critical values: 1 level
-3.596616 5 level
-2.933158 10 level
-2.604867 MacKinnon 1996 one-sided p-values.
Null Hypothesis: HMMD has a unit root Exogenous: Constant
Lag Length: 0 Automatic based on SIC, MAXLAG=9 t-Statistic
Prob. Augmented Dickey-Fuller test statistic
-2.091376 0.2490
Test critical values: 1 level
-3.596616 5 level
-2.933158 10 level
-2.604867 MacKinnon 1996 one-sided p-values.
Null Hypothesis: HBD has a unit root Exogenous: Constant
Lag Length: 0 Automatic based on SIC, MAXLAG=9 t-Statistic
Prob. Augmented Dickey-Fuller test statistic
-10.01369 0.0000
Test critical values: 1 level
-3.596616 5 level
-2.933158 10 level
-2.604867 MacKinnon 1996 one-sided p-values.
Null Hypothesis: HBI has a unit root Exogenous: Constant
Lag Length: 0 Automatic based on SIC, MAXLAG=9 t-Statistic
Prob. Augmented Dickey-Fuller test statistic
-1.514812 0.5165
Test critical values: 1 level
-3.596616 5 level
-2.933158 10 level
-2.604867 MacKinnon 1996 one-sided p-values.
Null Hypothesis: NT has a unit root Exogenous: Constant
Lag Length: 0 Automatic based on SIC, MAXLAG=9 t-Statistic
Prob. Augmented Dickey-Fuller test statistic
-0.354653 0.9076
Test critical values: 1 level
-3.596616 5 level
-2.933158 10 level
-2.604867 MacKinnon 1996 one-sided p-values.
Null Hypothesis: TFP has a unit root Exogenous: Constant
Lag Length: 0 Automatic based on SIC, MAXLAG=9 t-Statistic
Prob. Augmented Dickey-Fuller test statistic
-7.795568 0.0000
Test critical values: 1 level
-3.600987 5 level
-2.935001 10 level
-2.605836 MacKinnon 1996 one-sided p-values.
Lampiran 2 Unit root test first difference
Null Hypothesis: DHBDOM has a unit root Exogenous: Constant
Lag Length: 0 Automatic based on SIC, MAXLAG=9 t-Statistic
Prob. Augmented Dickey-Fuller test statistic
-5.673936 0.0000
Test critical values: 1 level
-3.600987 5 level
-2.935001 10 level
-2.605836 MacKinnon 1996 one-sided p-values.
Null Hypothesis: DPB has a unit root Exogenous: Constant
Lag Length: 0 Automatic based on SIC, MAXLAG=9 t-Statistic
Prob. Augmented Dickey-Fuller test statistic
-6.552085 0.0000
Test critical values: 1 level
-3.600987 5 level
-2.935001 10 level
-2.605836 MacKinnon 1996 one-sided p-values.
Null Hypothesis: DHMMD has a unit root Exogenous: Constant
Lag Length: 0 Automatic based on SIC, MAXLAG=9 t-Statistic
Prob. Augmented Dickey-Fuller test statistic
-5.698329 0.0000
Test critical values: 1 level
-3.600987 5 level
-2.935001 10 level
-2.605836 MacKinnon 1996 one-sided p-values.
Null Hypothesis: DHBD has a unit root Exogenous: Constant
Lag Length: 0 Automatic based on SIC, MAXLAG=9 t-Statistic
Prob. Augmented Dickey-Fuller test statistic
-7.951440 0.0000
Test critical values: 1 level
-3.600987 5 level
-2.935001 10 level
-2.605836 MacKinnon 1996 one-sided p-values.
Null Hypothesis: DHBI has a unit root Exogenous: Constant
Lag Length: 0 Automatic based on SIC, MAXLAG=9 t-Statistic
Prob. Augmented Dickey-Fuller test statistic
-6.121479 0.0000
Test critical values: 1 level
-3.600987 5 level
-2.935001 10 level
-2.605836 MacKinnon 1996 one-sided p-values.
Null Hypothesis: DNT has a unit root Exogenous: Constant
Lag Length: 0 Automatic based on SIC, MAXLAG=9 t-Statistic
Prob. Augmented Dickey-Fuller test statistic
-5.738095 0.0000
Test critical values: 1 level
-3.600987 5 level
-2.935001 10 level
-2.605836 MacKinnon 1996 one-sided p-values.
Null Hypothesis: DTFP has a unit root Exogenous: Constant
Lag Length: 1 Automatic based on SIC, MAXLAG=9 t-Statistic
Prob. Augmented Dickey-Fuller test statistic
-8.564531 0.0000
Test critical values: 1 level
-3.610453 5 level
-2.938987 10 level
-2.607932 MacKinnon 1996 one-sided p-values.
Lampiran 3 Uji selang optimal
VAR Lag Order Selection Criteria Endogenous variables: DHBDOM DHBD DHBI DPB DTFP DHMMD DNT DM
Exogenous variables: C Date: 011213 Time: 20:17
Sample: 1970 2011 Included observations: 38
Lag LogL
LR FPE
AIC SC
HQ -1233.548
NA 3.30e+18
65.34463 65.68938
65.46729 1
-1177.646 85.32465
5.44e+18 65.77082
68.87362 66.87477
2 -1071.515
117.3021 9.50e+17
63.55343 69.41426
65.63867 3
-953.5382 80.72109
2.62e+17 60.71253
69.33141 63.77906
indicates lag order selected by the criterion LR: sequential modified LR test statistic each test at 5 level
FPE: Final prediction error AIC: Akaike information criterion
SC: Schwarz information criterion HQ: Hannan-Quinn information criterion
Lampiran 4 Uji stabilitas
Roots of Characteristic Polynomial Endogenous variables: DHBDOM DHBD DHBI
DPB DTFP DHMMD DNT DM Exogenous variables: C
Lag specification: 1 2 Date: 011213 Time: 20:17
Root Modulus
-0.127725 - 0.829495i 0.839271
-0.127725 + 0.829495i 0.839271
-0.625920 - 0.544767i 0.829787
-0.625920 + 0.544767i 0.829787
0.773969 0.773969
-0.363359 - 0.651937i 0.746359
-0.363359 + 0.651937i 0.746359
0.353820 - 0.654374i 0.743905
0.353820 + 0.654374i 0.743905
-0.037720 - 0.710147i 0.711149
-0.037720 + 0.710147i 0.711149
-0.679049 0.679049
-0.617783 0.617783
0.510652 0.510652
0.045290 - 0.263132i 0.267001
0.045290 + 0.263132i 0.267001
No root lies outside the unit circle. VAR satisfies the stability condition.
Lampiran 5 Uji kointegrasi
Date: 011213 Time: 20:20 Sample: 1970 2011
Included observations: 39 Series: HBDOM HBD HBI PB HMMD NT TFP M
Lags interval: 1 to 2 Selected
0.05 level Number of
Cointegrating Relations by
Model Data Trend:
None None
Linear Linear
Quadratic Test Type
No Intercept Intercept
Intercept Intercept
Intercept No Trend
No Trend No Trend
Trend Trend
Trace 8
7 8
6 5
Max-Eig 8
7 8
6 4
Critical values based on MacKinnon-Haug-Michelis 1999 Information
Criteria by Rank and
Model
Data Trend: None
None Linear
Linear Quadratic
Rank or No Intercept
Intercept Intercept
Intercept Intercept
No. of CEs No Trend
No Trend No Trend
Trend Trend
Log Likelihood by
Rank rows and Model
columns -1127.319
-1127.319 -1117.624
-1117.624 -1101.416
1 -1069.132
-1063.149 -1054.602
-1051.582 -1036.258
2 -1030.128
-1015.842 -1008.553
-1005.504 -990.2221
3 -1006.102
-985.7222 -978.8057
-967.5569 -952.5052
4 -985.4609
-962.9680 -956.2232
-938.2496 -927.1541
5 -969.0210
-946.0303 -940.1286
-920.7228 -911.9969
6 -957.5273
-931.2420 -926.9975
-906.8288 -902.1901
7 -951.8659
-919.7810 -919.7641
-898.1420 -894.5993
8 -949.0549
-916.3774 -916.3774
-894.5871 -894.5871
Akaike Information
Criteria by Rank rows and
Model columns 64.37533
64.37533 64.28841
64.28841 63.86748
1 62.21192
61.95635 61.87703
61.77344 61.34657
2 61.03221
60.40217 60.33606
60.28223 59.80626
3 60.62062
59.72934 59.63106
59.20805 58.69258
4 60.38261
59.43425 59.29350
58.57690 58.21303
5 60.36005
59.43745 59.28865
58.54989 58.25625
6 60.59114
59.55087 59.43577
58.70917 58.57385
7 61.12133
59.83492 59.88534
59.13549 59.00509
8 61.79769
60.53218 60.53218
59.82498 59.82498
Schwarz Criteria by
Rank rows and Model
columns 69.83522
69.83522 70.08955
70.08955 70.00986
1 68.35430
68.14139 68.36066
68.29972 68.17144
2 67.85707
67.31234 67.50218
67.53365 67.31361
3 68.12798
67.36466 67.47966
67.18461 66.88242
4 68.57245
67.79472 67.82458
67.27861 67.08536
5 69.23238
68.52306 68.50222
67.97674 67.81107
6 70.14596
69.36162 69.33183
68.86116 68.81115
7 71.35863
70.37081 70.46388
70.01262 69.92488
8 72.71747
71.79321 71.79321
71.42725 71.42725
Date: 011213 Time: 20:22 Sample adjusted: 1973 2011
Included observations: 39 after adjustments Trend assumption: Quadratic deterministic trend
Series: HBDOM HBD HBI PB HMMD NT TFP M Lags interval in first differences: 1 to 2
Unrestricted Cointegration Rank Test Trace Hypothesized
Trace 0.05
No. of CEs Eigenvalue
Statistic Critical Value
Prob. None
0.964613 413.6576
175.1715 0.0000
At most 1 0.905657
283.3421 139.2753
0.0000 At most 2
0.855460 191.2700
107.3466 0.0000
At most 3 0.727484
115.8363 79.34145
0.0000 At most 4
0.540351 65.13412
55.24578 0.0053
At most 5 0.395235
34.81970 35.01090
0.0524 At most 6
0.322448 15.20600
18.39771 0.1323
At most 7 0.000629
0.024528 3.841466
0.8755 Trace test indicates 5 cointegrating eqns at the 0.05 level
denotes rejection of the hypothesis at the 0.05 level MacKinnon-Haug-Michelis 1999 p-values
Lampiran 6 Uji granger causality
Pairwise Granger Causality Tests Date: 011213 Time: 20:29
Sample: 1970 2011
Lags: 2 Null Hypothesis:
Obs F-Statistic
Prob. DHBD does not Granger Cause DHBDOM
39 0.33800
0.7156 DHBDOM does not Granger Cause DHBD
1.73265 0.1921
DHBI does not Granger Cause DHBDOM 39
3.28754 0.0495
DHBDOM does not Granger Cause DHBI 7.93050
0.0015 DPB does not Granger Cause DHBDOM
39 0.13525
0.8740 DHBDOM does not Granger Cause DPB
4.68122 0.0160
DHMMD does not Granger Cause DHBDOM 39
0.84891 0.4367
DHBDOM does not Granger Cause DHMMD 6.78054
0.0033 DNT does not Granger Cause DHBDOM
39 0.01251
0.9876 DHBDOM does not Granger Cause DNT
0.15763 0.8548
DTFP does not Granger Cause DHBDOM 39
0.46759 0.6305
DHBDOM does not Granger Cause DTFP 0.49689
0.6128 DHBI does not Granger Cause DHBD
39 2.61659
0.0877 DHBD does not Granger Cause DHBI
4.51505 0.0182
DPB does not Granger Cause DHBD 39
3.34584 0.0472
DHBD does not Granger Cause DPB 1.03417
0.3664 DHMMD does not Granger Cause DHBD
39 5.74368
0.0071 DHBD does not Granger Cause DHMMD
1.25379 0.2983
DNT does not Granger Cause DHBD 39
0.01102 0.9890
DHBD does not Granger Cause DNT 0.01174
0.9883 DTFP does not Granger Cause DHBD
39 0.80665
0.4547 DHBD does not Granger Cause DTFP
0.22339 0.8010
DPB does not Granger Cause DHBI 39
0.65509 0.5258
DHBI does not Granger Cause DPB 1.83156
0.1756
DHMMD does not Granger Cause DHBI 39
0.38517 0.6833
DHBI does not Granger Cause DHMMD 3.09544
0.0582 DNT does not Granger Cause DHBI
39 0.23430
0.7924 DHBI does not Granger Cause DNT
1.08608 0.3490
DTFP does not Granger Cause DHBI 39
0.42408 0.6578
DHBI does not Granger Cause DTFP 0.24163
0.7867 DHMMD does not Granger Cause DPB
39 0.09636
0.9084 DPB does not Granger Cause DHMMD
0.60807 0.5502
DNT does not Granger Cause DPB 39
0.46685 0.6309
DPB does not Granger Cause DNT 0.18522
0.8318 DTFP does not Granger Cause DPB
39 3.91307
0.0295 DPB does not Granger Cause DTFP
0.29733 0.7447
DNT does not Granger Cause DHMMD 39
0.26778 0.7667
DHMMD does not Granger Cause DNT 0.10296
0.9024 DTFP does not Granger Cause DHMMD
39 0.61780
0.5451 DHMMD does not Granger Cause DTFP
0.00198 0.9980
DTFP does not Granger Cause DNT 39
0.35338 0.7049
DNT does not Granger Cause DTFP 0.20359
0.8168
Lampiran 7 Hasil estimasi VECM
Vector Error Correction Estimates Date: 011213 Time: 20:31
Sample adjusted: 1973 2011 Included observations: 39 after adjustments
Standard errors in t-statistics in [ ] Cointegrating Eq: CointEq1
HBDOM-1 1.000000
HBD-1 1.126585
0.40740 [ 2.76532]
HBI-1 -6.458455
0.30263 [-21.3412]
PB-1 7.26E-05
3.4E-05 [ 2.10426]
HMMD-1 -0.001303
0.00106 [-1.22905]
NT-1 -1.99E-05
2.1E-05 [-0.93801]
TFP-1 -0.013564
0.01885 [-0.71951]
C 0.435840
Error Correction: DHBDOM DHBD
DHBI DPB
DHMMD DNT
DTFP CointEq1
0.762663 0.071987
0.129605 -23.56802
-14.68627 -82.92917
-1.800337 0.13112
0.03356 0.03513
310.849 7.19368
367.456 2.58370
[ 5.81667] [ 2.14521]
[ 3.68949] [-0.07582]
[-2.04155] [-0.22568]
[-0.69681] DHBDOM-1
-0.898211 -0.103426
-0.017534 139.2733
17.36398 41.14925
0.665113 0.19281
0.04935 0.05166
457.115 10.5786
540.358 3.79943
[-4.65847] [-2.09589]
[-0.33942] [ 0.30468]
[ 1.64143] [ 0.07615]
[ 0.17506] DHBDOM-2
-0.784347 -0.051800
-0.005653 -1154.596
-24.06003 125.6475
3.136219 0.16238
0.04156 0.04350
384.967 8.90891
455.071 3.19975
[-4.83032] [-1.24645]
[-0.12994] [-2.99921]
[-2.70067] [ 0.27611]
[ 0.98015] DHBD-1
-0.547494 -0.148941
-0.035033 -4402.534
26.51228 -131.6899
8.218586 0.75350
0.19284 0.20187
1786.38 41.3404
2111.68 14.8479
[-0.72660] [-0.77233]
[-0.17354] [-2.46451]
[ 0.64132] [-0.06236]
[ 0.55352] DHBD-2
0.189235 -0.080433
0.248078 -1150.666
49.49117 -534.9760
0.780942 0.39411
0.10087 0.10559
934.349 21.6227
1104.50 7.76608
[ 0.48016] [-0.79743]
[ 2.34949] [-1.23152]
[ 2.28885] [-0.48436]
[ 0.10056] DHBI-1
2.935679 -0.112306
0.180502 2458.988
-19.54508 924.2168
-7.070810 0.69895
0.17888 0.18726
1657.05 38.3474
1958.80 13.7730
[ 4.20015] [-0.62782]
[ 0.96392] [ 1.48396]
[-0.50968] [ 0.47183]
[-0.51338] DHBI-2
2.455006 0.037935
0.211486 -4402.872
-71.17165 -1365.805
-1.627206 0.54202
0.13872 0.14521
1285.00 29.7375
1519.00 10.6806
[ 4.52941] [ 0.27346]
[ 1.45638] [-3.42637]
[-2.39333] [-0.89915]
[-0.15235] DPB-1
-0.000110 -3.92E-05
-1.61E-05 0.011334
-0.003293 -0.061848
-0.000617 7.3E-05
1.9E-05 1.9E-05
0.17204 0.00398
0.20338 0.00143
[-1.51737] [-2.11199]
[-0.83010] [ 0.06588]
[-0.82710] [-0.30411]
[-0.43153] DPB-2
-0.000156 -4.10E-05
-6.66E-07 -0.508254
-0.002679 -0.029184
0.001548 8.0E-05
2.0E-05 2.1E-05
0.18906 0.00438
0.22348 0.00157
[-1.95201] [-2.01085]
[-0.03116] [-2.68837]
[-0.61242] [-0.13059]
[ 0.98480] DHMMD-1
0.010460 0.002049
0.001314 -1.088284
-0.017186 1.456307
0.003201 0.00307
0.00079 0.00082
7.28965 0.16870
8.61713 0.06059
[ 3.40191] [ 2.60342]
[ 1.59530] [-0.14929]
[-0.10188] [ 0.16900]
[ 0.05282] DHMMD-2
0.006856 -0.000758
-0.000975 15.57057
-0.171787 -0.634308
-0.041771 0.00329
0.00084 0.00088
7.80959 0.18073
9.23175 0.06491
[ 2.08127] [-0.89963]
[-1.10494] [ 1.99378]
[-0.95052] [-0.06871]
[-0.64350] DNT-1
-6.60E-05 -2.06E-06
-5.49E-06 0.063327
-0.001151 0.085767
0.000428 8.1E-05
2.1E-05 2.2E-05
0.19207 0.00444
0.22705 0.00160
[-0.81438] [-0.09918]
[-0.25283] [ 0.32971]
[-0.25898] [ 0.37775]
[ 0.26813]
DNT-2 0.000166
-2.22E-05 -4.40E-06
-0.122619 -0.004224
-0.047829 0.000934
8.8E-05 2.2E-05
2.3E-05 0.20773
0.00481 0.24556
0.00173 [ 1.89260]
[-0.99123] [-0.18735]
[-0.59028] [-0.87861]
[-0.19477] [ 0.54109]
DTFP-1 0.019590
-0.003250 0.002092
-51.02504 -0.887540
14.61118 -1.157670
0.01070 0.00274
0.00287 25.3613
0.58691 29.9797
0.21080 [ 1.83130]
[-1.18705] [ 0.73001]
[-2.01192] [-1.51222]
[ 0.48737] [-5.49187]
DTFP-2 0.012270
-0.001124 0.000860
-71.55049 -0.836290
12.74710 -0.607739
0.01271 0.00325
0.00340 30.1280
0.69722 35.6144
0.25042 [ 0.96550]
[-0.34544] [ 0.25263]
[-2.37489] [-1.19946]
[ 0.35792] [-2.42692]
C -0.182073
0.002061 0.009942
568.4130 5.922589
261.0652 -0.187079
0.09754 0.02496
0.02613 231.250
5.35160 273.362
1.92209 [-1.86661]
[ 0.08255] [ 0.38045]
[ 2.45800] [ 1.10669]
[ 0.95502] [-0.09733]
R-squared 0.748962
0.683431 0.719620
0.657749 0.658885
0.111418 0.654941
Adj. R-squared 0.585242
0.476972 0.536763
0.434542 0.436419
-0.468093 0.429902
Sum sq. resids 3.130962
0.205083 0.224734
17597838 9424.597
24590737 1215.752
S.E. equation 0.368956
0.094428 0.098849
874.7133 20.24265
1034.003 7.270403
F-statistic 4.574640
3.310261 3.935434
2.946808 2.961728
0.192262 2.910347
Log likelihood -6.155290
46.99553 45.21116
-309.2232 -162.3452
-315.7478 -122.4099
Akaike AIC 1.136169
-1.589514 -1.498008
16.67811 9.145906
17.01271 7.097946
Schwarz SC 1.818656
-0.907027 -0.815522
17.36060 9.828393
17.69520 7.780433
Mean dependent -0.113333
-0.018479 -0.013921
597.8718 1.317978
214.2628 -0.056357
S.D. dependent 0.572898
0.130568 0.145234
1163.230 26.96430
853.3852 9.629056
Determinant resid covariance dof adj.
1.46E+10 Determinant resid covariance
3.62E+08 Log likelihood
-771.6510 Akaike information criterion
45.67441 Schwarz criterion
50.75040
Lampiran 8 Analisis IRF
Period HBDOM
HBD HBI
PB HMMD
NT TFP
1 0.368956
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
2 0.375126
0.075942 -0.051704
-0.018205 0.069119
-0.058298 0.048750
3 0.296116
0.171262 -0.063587
-0.096399 0.122375
0.062142 -0.039861
4 0.250496
0.216341 -0.340114
-0.095048 0.099353
0.032215 -0.034648
5 0.173233
0.185900 -0.410414
-0.115950 0.040324
-0.015975 0.023887
Choles ky
Orderin g:
HBDO M HBD
HBI PB HMMD
NT TFP
Lampiran 9 Analisis FEVD
Period S.E.
HBDOM HBD
HBI PB
HMMD NT
TFP 1
0.368956 100.0000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
2 0.544218
93.47521 1.947260
0.902612 0.111905
1.613058 1.147535
0.802423 3
0.668544 81.56006
7.852726 1.502757
2.153288 4.419528
1.624407 0.887230
4 0.832660
61.62802 11.81284
17.65327 2.691139
4.272778 1.196858
0.745098 5
0.970684 48.53299
12.36006 30.86663
3.407099 3.316626
0.907775 0.608824
Choles ky
Orderin g:
HBDO M HBD
HBI PB HMMD
NT TFP
-.6 -.4
-.2 .0
.2 .4
1 2
3 4
5
Response of HBDOM to HBDOM
-.6 -.4
-.2 .0
.2 .4
1 2
3 4
5
Response of HBDOM to HBD
-.6 -.4
-.2 .0
.2 .4
1 2
3 4
5
Response of HBDOM to HBI
-.6 -.4
-.2 .0
.2 .4
1 2
3 4
5
Response of HBDOM to PB
-.6 -.4
-.2 .0
.2 .4
1 2
3 4
5
Response of HBDOM to HMMD
-.6 -.4
-.2 .0
.2 .4
1 2
3 4
5
Response of HBDOM to NT
-.6 -.4
-.2 .0
.2 .4
1 2
3 4
5
Response of HBDOM to TFP
Response to Cholesky One S.D. Innovations
10 20
30 40
50 60
70 80
90 100
1 2
3 4
5 TFP
NT HMMD
PB HBI
HBD HBDOM
ABSTRACT
SANTI CHINTIA. Impact of World Oil Price Shock on Domestic Rice Price Cointegration Analysis. Supervised by DEDI BUDIMAN HAKIM and HENY
K. DARYANTO.
Rice is a substantial strategic and food comodity in Indonesia and also in some countries in the world, particularly in Asia. Therefore, the stability of rice
price and the availability should be maintained, especially rice is also known as unstable commodity. Starting in 1994, Indonesia became a net importer of rice
commodity, then, Indonesia‟s rice market is allegedly integrated with the world‟s
rice market. Consequently, any changes or shock in the world‟s rice market,
which is one of its shocks caused by world oil price shock, will affect the domestic rice market. The objectives of this study are: 1 to analyze factors that
influence the domestic rice price, 2 to analyze the effect of changes on the world oil price shocks to the domestic rice price. The applicable method for this study is
vector error correction model VECM with analysis tools are IRF, FEVD, and pass-through. The estimation results indicate that there is a cointegration in the
models studied. In the short-term, factors variables that affect the domestic rice price are the price of imported rice, domestic rice price, and the price of crude oil.
Besides, in the long run, factors variables that affect the domestic rice price are the price of imported rice, world rice price, and production rice. The variables that
largely influence the domestic rice price are world rice price and price of imported rice. On the other hand, a variable that slightly affect is the total factor
productivity TFP. Key words: rice, rice price, world oil price shock, TFP, VECM, pass through
RINGKASAN
SANTI CHINTIA. Dampak Guncangan Harga Minyak Mentah Dunia terhadap Harga Beras Domestik Suatu Analisis Kointegrasi DEDI BUDIMAN HAKIM
sebagai Ketua dan HENY K. DARYANTO sebagai Anggota Komisi Pembimbing.
Beras merupakan salah satu komoditas tanaman pangan strategis baik di Indonesia maupun di sebagian besar negara-negara di dunia. Oleh karena itu,
beras sering digunakan sebagai instrumen pengatur baik dari dimensi ekonomi, sosial, maupun politik. Di Indonesia beras merupakan makanan pokok masyarakat
Indonesia. Karena beras merupakan komoditi yang menguasai hajat hidup orang banyak maka pemeintah harus terus menjaga kestabilan beras baik dari sisi harga
maupun ketersediaannya. Tetapi karena Indonesia termasuk net importir beras, maka diduga pasar beras domestik terintegrasi dengan pasar beras dunia. Situasi
ini menyebabkan kejadian atau shocks yang terjadi di pasar beras dunia akan mempengaruhi kondisi pasar beras domestik yang pada akhirnya akan
mempengaruhi fluktuasi harga beras domestik.
Penelitian ini bertujuan untuk : 1 mengkaji pola dan karakteristik pergerakan harga beras domestik 2 menganalisis dampak guncangan harga
minyak mentah dunia terhadap dinamika harga beras domestik. 3 mengukur besar pengaruh guncangan harga minyak mentah dunia terhadap harga beras
domestik. Penelitian ini menggunakan data sekunder deret waktu time series sejak tahun 1969-2011. Analisis menggunakan Vector Error Correction Model
VECM.
Hasil analisis menunjukkan harga beras domestik memiliki pola berfluktuatif dan memiliki tren yang terus meningkat, tetapi harga beras domestik
selalu berfluktuatif pada trennya. Karakteristik menarik dari harga beras domestik adalah selalu berada diatas harga beras dunia. Hal ini terjadi karena beras
merupakan komoditi yang banyak diintervensi oleh pemerintah untuk menjaga kestabilan harga beras domestik untuk menjaga daya beli masyarakat sebagai
konsumen dan petani sebagai produsen.
Hasil estimasi VECM menunjukkan bahwa pada jangka pendek harga beras domestik dipengaruhi oleh harga beras domestik itu sendiri, harga beras impor,
dan harga minyak mentah dunia. Pada jangka panjang harga beras domestik dipengaruhi oleh harga beras dunia, harga beras impor, dan produksi beras.
Hasil analisis IRF memberikan simpulan bahwa harga beras domestik memberikan respon yang fluktuatif dengan shock dari semua variabel. Hal ini
membuktikan bahwa variabel harga beras adalah variabel yang volatil. Artinya, harga beras akan selalu berfluktuasi pada trennya dari waktu ke waktu.
Berdasarkan hasil analisis FEVD harga beras domestik paling besar dipengaruhi oleh harga beras domestik itu sendiri yaitu rata-rata sebesar 77.03
persen, harga beras impor sebesar 10.18 persen, harga beras dunia sebesar 6.79 persen, harga minyak mentah dunia sebesar 2.72 persen, produksi beras dan nilai
tukar masing-masing sebesar 1.67 dan 0.97 persen, sedangkan total faktor produktivitas hanya berpengaruh sebesar 0.61 persen terhadap perubahan harga
beras domestik.
Berdasarkan hasil analisis pass through yang telah dilakukan, maka dapat disimpulkan bahwa terdapat dua kelompok pengaruh. Pertama
, kelompok “faktor harga” yang terdiri dari harga beras dunia, harga beras impor, dan harga minyak
mentah dunia. Kedua , adalah kelompok “faktor non harga” yang terdiri dari
variabel produksi beras, total faktor produktivitas, nilai tukar. Dilihat dari besaran koefisien hasil analisis pass through, maka kelompok faktor harga memiliki
pengaruh yang lebih besar dibanding faktor non harga. Kata kunci: beras, harga beras, harga minyak mentah dunia, total faktor
produktivitas TFP, VECM, pass through
1 PENDAHULUAN