Sejarah Penentuan Harga Opsi Put Amerika dengan Simulasi Monte Carlo

46 Stanislaw Marcin Ulam menyatakan bahwa metode tersebut dinamakan untuk menghormati pamannya yang seorang penjudi, atas saran Metropolis. Penggunaannya yang cukup dikenal adalah oleh Enrico Fermi pada tahun 1930, ketika ia menggunakan metode acak untuk menghitung sifat-sifat neutron yang waktu itu baru saja ditemukan. Metode Monte Carlo merupakan simulasi inti yang digunakan dalam Manhattan Project, meski waktu itu masih menggunakan oleh peralatan komputasi yang sangat sederhana. Sejak digunakannya komputer elektronik pada tahun 1945, Monte Carlo mulai dipelajari secara mendalam. Pada tahun 1950-an, metode ini digunakan di Laboratorium Nasional Los Alamos untuk penelitian awal pengembangan bom hidrogen, dan kemudian sangat populer dalam bidang fisika dan riset operasi. Rand Corporation dan Angkatan Udara AS merupakan dua institusi utama yang bertanggung jawab dalam pendanaan dan penyebaran informasi mengenai Monte Carlo waktu itu, dan mereka mulai menemukan aplikasinya dalam berbagai bidang. Simulasi Monte Carlo dikenal dengan istilah sampling simulation atau Monte Carlo Sampling Technique . Istilah Monte Carlo pertama digunakan selama masa pengembangan bom atom yang merupakan nama kode dari simulasi nuclear fission. Simulasi ini sering digunakan untuk evaluasi dampak perubahan input dan risiko dalam pembuatan keputusan. Simulasi ini menggunakan data sampling yang telah ada historical data dan telah diketahui distribusi datanya. Penggunaan metode Monte Carlo memerlukan sejumlah besar bilangan acak, dan hal tersebut semakin mudah dengan perkembangan pembangkit bilangan-bilangan acak, yang jauh lebih cepat dan praktis dibandingkan dengan metode sebelumnya yang menggunakan tabel bilangan acak untuk sampling statistik. Aplikasi metode Monte Carlo  Grafis, terutama untuk ray tracing.  Permodelan transportasi ringan dalam jaringan multi lapis multi-layered tissues MCML.  Metode Monte Carlo dalam bidang finansial.  Simulasi prediksi struktur protein. 47  Dalam riset peralatan semikonduktor, untuk memodelkan transportasi pembawa arus.  Pemetaan genetik yang melibatkan ratusan penanda genetik dan analisis QTL.

4.2 Gambaran Umum

Simulasi Monte Carlo adalah pengambilan sampel dengan menggunakan bilangan-bilangan acak random numbers dilakukan dengan bantuan komputer. Prinsip kerja dari simulasi Monte Carlo adalah membangkitkan bilangan-bilangan acak atau sampel dari suatu variabel acak yang telah diketahui distribusinya. Oleh karena itu, dengan simulasi Monte Carlo seolah-olah dapat diperoleh data dari lapangan, atau dengan perkataan lain simulasi Monte Carlo meniru kondisi lapangan secara numerik. Simulasi Monte Carlo merupakan alat rekayasa yang ampuh untuk menyelesaikan berbagai persoalan rumit di dalam bidang probabilitas dan statistik. Meskipun demikian, simulasi Monte Carlo tidak memberikan hasil yang eksak, karena pada hakekatnya simulasi Monte Carlo adalah suatu metode pendekatan numerik. Seperti pada umumnya metode numerik, simulasi Monte Carlo membutuhkan banyak sekali iterasi dan usaha penghitungan, khususnya untuk masalah-masalah yang melibatkan peristiwa-peristiwa langka very rare events . Oleh karena kelemahan-kelemahan tersebut, sebaiknya simulasi Monte Carlo baru digunakan bila metode analisis tidak tersedia atau metode pendekatan misalnya pendekatan orde pertama dari fungsi variabel acak yang taklinear tidak memadai. Simulasi Monte Carlo dari suatu proses stokastik adalah suatu prosedur untuk mendapatkan contoh acak terhadap hasil proses tersebut Wong 2001. Jika suatu sistem mengandung elemen yang mengikutsertakan faktor kemungkinan, model yang digunakan adalah model stokastik. Dasar dari simulasi Monte Carlo adalah percobaan elemen kemungkinan dengan menggunakan sampel random acak. Metode ini memiliki lima tahapan dalam menyelesaikan permasalahan yang ada dan terdapat tiga batasan dasar dalam penggunaan metode ini. 48 Lima tahapan yang terdapat dalam simulasi Monte Carlo diantaranya: 1. membuat distribusi kemungkinan untuk variabel penting, 2. membangun distribusi kumulatif untuk tiap-tiap variabel di tahap pertama, 3. menentukan interval angka random, 4. membuat angka random, 5. membuat simulasi dari rangkaian percobaan. Sedangkan tiga batasan dasar simulasi Monte Carlo adalah: 1. Apabila suatu persoalan sudah dapat diselesaikan atau dihitung jawabannya secara matematis dengan tuntas, maka hendaknya jangan menggunakan simulasi ini 2. Apabila sebagaian persoalan tersebut dapat diselesaikan secara analitis dengan baik, maka penyelesaiannya lebih baik dilakukan secara terpisah. Sebagian secara analitis dan sebagian lagi simulasi 3. Apabila mungkin dapat digunakan simulasi perbandingan

4.3 Ilustrasi Penggunaan Simulasi

Sebuah toko sepatu memperkirakan permintaan sepatu per harinya menurut pola distribusi sebagai berikut : Tabel 1 Distribusi permintaan sepatu per hari Permintaanhari Frekuensi Permintaan 3 pasang 5 4 pasang 10 5 pasang 15 6 pasang 30 7 pasang 25 8 pasang 15 Jumlah 100