Uji Heteroskedastisitas Uji Multikolinieritas

54 besar dari 0,05 maka Ho ditolak dengan pengertian bahwa data yang dianalisis berdistribusi normal. Demikian juga sebaliknya jika nilai sig probability lebih kecil dari 0,05 maka Ho diterima dengan pengertian bahwa data yang dianalisis tidak berdistribusi normal. Berikut ini pengujian normalitas yang didasarkan dengan uji statistik nonparametik Kolmogorv-Smirnov K-S. Tabel 4.7 Uji Kolmogrov Smirnov One-Sample Kolmogorov-Smirnov Test Unstandardized Residual N 50 Normal Parameters a,,b Mean .0000000 Std. Deviation .78155063 Most Extreme Differences Absolute .084 Positive .084 Negative -.060 Kolmogorov-Smirnov Z .592 Asymp. Sig. 2-tailed .874 a. Test distribution is Normal. b. Calculated from data. Sumber: Hasil Penelitian, 2016 data diolah Berdasarkan Tabel 4.7, terlihat bahwa nilai Asymp.Sig. 2-tailed adalah 0,874, ini berarti nilainya diatas nilai signifikan 5 0.05, dengan kata lain variabel tersebut berdistribusi normal.

4.3.2 Uji Heteroskedastisitas

Uji ini bertujuan untuk menguji apakah didalam model regresi terjadi ketidaksamaan varians. Jika varians dari residual satu pengamatan ke pengamatan yang lain tetap, maka disebut homoskedastisitas dan jika berbeda disebut heteroskedastisitas. Model regresi yang baik adalah yang homoskedastisitas atau 55 tidak terjadi heteroskedastisitas. Ada beberapa cara untuk mendeteksi ada atau tidaknya heteroskedastisitas, yaitu : 1. Analisis Grafik Dasar analisis adalah tidak ada pola yang jelas, serta titik-titik menyebar di atas dan di bawah angka 0 pada sumbu Y, maka tidak terjadi heteroskedastisitas, sedangkan jika ada pola tertentu, seperti titik-titik yang membentuk pola tertentu yang teratur, maka mengindikasikan telah terjadi heteroskedastisitas. Sumber: Hasil Penelitian, 2016 data diolah Gambar 4.4 Pengujian Heteroskedastisitas Scatterplot Berdasarkan Gambar 4.4 dapat terlihat bahwa tidak ada pola yang jelas, serta titik-titik menyebar diatas dan dibawah angka 0 pada sumbu Y, maka berdasarkan metode grafik tidak terjadi heteroskedastisitas pada model regresi. 56 2. Analisis Statistik Dasar analisis metode statistik adalah jika variabel bebas signifikan secara statistik mempengaruhi variabel terikat, maka ada indikasi terjadi heteroskedastisitas. Tabel 4.8 Uji Glejser Coefficients a Model Unstandardized Coefficients Standardized Coefficients T Sig. B Std. Error Beta 1 Constant 2.101 1.653 1.271 .210 Pelayanan .131 .058 .346 2.249 .069 Kepercayaan .008 .062 .017 .123 .903 Kepuasan .038 .077 .075 .493 .624 a. Dependent Variable: RES2 Sumber: Hasil Penelitian, 2016 data diolah Berdasarkan Tabel 4.8 dapat diketahui bahwa tidak satupun variabel bebas yang signifikan secara statistik mempengaruhi variabel terikat RES2.Hal ini terlihat dari probabilitas signifikansinya di atas tingkat kepercayaan 5 jadi disimpulkan model regresi tidak mengarah adanya heteroskedastisitas.

4.3.3 Uji Multikolinieritas

Gejala multikolinieritas dapat dilihat dari besarnya nilai Tolerance dan VIF Variance Inflation Factor, Kedua ukuran ini menunjukkan setiap variabel independen manakah yang dijelaskan oleh variabel independen lainnya, Tolerance adalah mengukur variabilitas variabel independen yang terpilih yang tidak dijelaskan variabel independen lainnya. Nilai yang dipakai untuk Tolerance 0,1, dan VIF 5, maka tidak terjadi multikolinieritas. 57 Tabel 4.9 Uji Multikolinieritas Coefficients a Model Unstandardized Coefficients Standardized Coefficients t Sig. Collinearity Statistics B Std. Error Beta Tolerance VIF 1 Constant -1.359 2.885 -.471 .640 Pelayanan .436 .102 .476 4.282 .000 .822 1.217 Kepercayaan .358 .109 .334 3.287 .002 .983 1.017 Kepuasan .282 .134 .232 2.103 .041 .834 1.200 a. Dependent Variable: Loyalitas Sumber: Hasil Penelitian, 2016 data diolah Berdasarkan Tabel 4.9 dapat terlihat bahwa data variabel tidak terkena multikolinieritas karena nilai VIF 5 dan nilai Tolerance 0,1 sehingga model regresi layak dipakai untuk memprediksi loyalitas berdasarkan masukan variabel pelayanan, varibel kepercayaan, dan variabel kepuasan.

4.4 Analisis Linier Berganda