2.1.6 Kemampuan Pemecahan Masalah
2.1.6.1 Pengertian Kemampuan Pemecahan Masalah
Kemampuan pemecahan masalah merupakan salah satu kemampuan yang harus dimiliki oleh siswa. Giganti 2007 berpendapat bahwa:
... if you think of skills and concepts as what we need to know in mathematics, then problem-solving is the ability to apply
mathematics we know in different situations. Problem solving is important because it requires us to combine skills and concepts in
order to deal with specific mathematical situations—we call these problems.
OECD Organization for Economic Co-operation and Development dalam Giganti mendefinisikan kemampuan pemecahan masalah sebagai berikut:
... an individual’s capacity to use cognitive processes to confront and resolve real, cross-disciplinary situations where the solution is
not immediately obvious, and where the literacy domains or curricular areas that might be applicable are not within a single
domain of mathematics, science, or reading. Suherman dkk 2003: 89 mengemukakan bahwa pemecahan masalah
merupakan bagian dari kurikulum matematika yang sangat penting karena dalam proses pembelajaran maupun penyelesaian, siswa dimungkinkan memperoleh
pengalaman menggunakan pengetahuan serta ketrampilan yang sudah dimiliki untuk diterapkan pada pemecahan masalah yang bersifat tidak rutin. Saad dan
Ghani 2008: 120 menyatakan bahwa “problem solving is a planned process that needs to be carried out in order to obtain a certain solution of a problem that
might not be achieved immidiately and requires knowledge and experiences as well as the application of the skills learned in the classroom”.
2.1.6.2 Langkah-langkah Pemecahan Masalah
Menurut Polya dalam Suherman dkk 2003: 99, dalam pemecahan suatu masalah terdapat empat langkah yang harus dilakukan yaitu: 1 memahami
masalah, 2 merencanakan pemecahannya, 3 menyelesaikan masalah sesuai rencana langkah kedua, dan 4 memeriksa kembali dasil yang diperoleh looking
back. Adapun langkah-langkah pemecahan masalah menurut Polya 1973
adalah sebagai berikut. 1.
Understanding The Problem a.
What is the unknown? What are the data? What is the condition?
b. Is it possible to satisfy the condition? Is the condition
sufficient to determine the unknown? Or it is insufficient? Or redudant? Or contradictory?
2. Design a Plan
a. Have you seen it before? Or have you seen the same the
problem in slightly different form? b.
Do you know a rellated problem? Do you know a theorem that could be useful?
c. Look at the unknown And try to think of a familiar problem
having the same or a similar unknown. d.
Here is a problem related to yours and solved before. Could you use it? Should you introduce some auxiliaryy element in
order to make its use possible? e.
Could you restate the problem? Could yoou restate still differently?
f. Go back to definitions.
3. Carrying out the plan
a. Carrying out your plan of the solution, check each step.
b. Can you see clearlyn that the step is correct?Can you prove
that it is correct? 4.
Looking back a.
Can you check the result? Can you check the argument? b.
Can you derive the result differently? Can you see it at a glace?
c. Can you use the result, or method, for some other problem?
2.1.6.3 Indikator Kemampuan Pemecahan Masalah