Saran SIMPULAN DAN SARAN
Kirkby EA, Mengel K. 1987. Principle of Plant Nutrition. International Potash Institut Switzerland.
Koh LP, Wilcove DS. 2007. Cashing in Palm oil for Conservation. Nature 448: 993-994.
Kurnia U, Sudirman, Kusnadi H. 2005. Rehabilitasi dan Reklamasi Lahan Terdegradasi. Pusat Penelitian dan Pengembangan Tanah dan Agroklimat.
Badan Penelitian dan Pengembangan pertanian. Departemen Pertanian. 147- 182. Bogor.
Lambers H, Stuart CF, Thijs LP. 1998. Plant Physiologycal Ecology, Springer. Verlag New York Inc.
Little TM, Hills FJ, 1977. Agricultural experimentation: Design and Analysis. New York: J Wiley.
[LBN] Lembaga Biologi Nasional. 1980. Jenis-jenis Kayu Indonesia. Jakarta. Penerbit Balai Pustaka.
MacDonald G. 2004. Cogograss Imperata cylindrica Biology, Ecology, and Management. Critical Reviews in Plant Sciences 23: 367- 380.
Mangold RD. 1997. Forest Health Monitoring, Revision USDA Forest Service. National Forest Triangle Park, NC 27709.
Mansur I. 2010. Teknik Silvikultur, Untuk reklamasi Lahan Bekas Tambang. Seameo Biotrop. Bogor: Southeast Asian Regional Centre for Tropical
Biologi. Martawijaya A, Kartasujana A, Mandang YI, Prawira SA, Kadir K. 1989. Atlas
Kayu Indonesia. Jilid II. Bogor: Departemen Kehutanan badan Penelitian dan Pengembangan Kehutanan.
Marzuki I. 2007. Study morfo-ekotipe dan karakterisasi minyak atsiri, izozim, dan DNA pala Banda Miristica fragrans Houtt Maluku Disertasi. Bogor :
Sekolah Pascasarjana, Institut Pertanian Bogor. Mawazin, Hendi S. 2008. Pengaruh Jarak Tanam Terhadap Pertumbuhan
Diameter. Pusat Litbang Hutan dan Konservasi Alam. Meijer W. 1974. Field Guide For Trees Of West Malesia.
Moravie MA, Durand M, and Houllier F. 1999. Ecological Meaning and Predictive Ability of Sosial Status, Vigour and Competition indices in a
Tropical Rain Forest India. Forest Ecology ang Management 117 1999 221- 240.
Odum EP. 1994. Dasar-Dasar Ekologi. ED ke -3. Samingan TJ, penerjemah. Jogjakarta: Gajah Mada Universitu Press. Terjemahan dari: Foundamentals
of Ecology, 3
�
Edition. Pausas JG, Pere Casals P, Romanya J. 2004. Litter decomposition and faunal
activity in Mediterranean forest soils: effects of N content and the moss layer. Soil Biochem 36:989-99.
Pratiwi. 2005. Aspek Konservasi tanah Dan Air dalam Rehabilitasi Hutan Dan Lahan. Prosiding ekspose Penerapan Hasil Litbang Hutan Dan Konservasi
Alam, Palembang, Pusat litbang Hutan Dan Konservasi Alam Bogor. Pusat Inventarisasi dan Perpetaan Hutan. 2008. Penghitungan Deforestasi
Indonesia tahun 2008. Badan Planologi Kehutanan. Departemen Kehutanan. Jakarta.
[PROSEA] Plant Resources of South-East Asia. 1995. Lemmens RHMJ, Soerjabegara I, Wong WC, editor. Timber Trees: Minor Commercial
Timbers. Jilid 5. Volume ke-2. Bogor: PROSEA Network Office. Ramirez-Marcial N, González-Espinosa M, Camacho-Cruz A, Ortiz-Aguilar D.
2010. Forest Restoartion in Lagunas de MontebelloNational Park, Chiapsas, Mexico. Ecology Restoration 283: 354-360.
Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzoo R, Huber- Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM,
Mooney HA, Oesterheld M, Poff NF, Sykes MT, Walker BH, Walker M, Wall DH. 2000. Global Biodiversity Scenarios for the Year 2100. Science
287: 1770-1774.
Salm CV, Kohlenberg L, Vries WD. 1998. Assessment of weathering rates in Ducts loess and river-clay soil at pH 3.5, using laboratory experiments.
Geoderma 85:41-62. Schulte A. 1996. Dipterocarp Forest Ecosystem Theory Based on Matter Balance
and Biodiversity.in Dipterocarp Forest Ecosystem: Toward Sustainable Management. Schulte A, Schone D, editors. Singapore: Word Scientific
SER Society for Ecological Restoration International Science Policy Working Group. 2004. The SER International Primer on Ecological Restoration
available from http:www.ser.org
accessed in December 2010. Society for Ecological Restoration International. Tucson. Arizona.
Setiadi D. 1998. Keterkaitan profil Vegetasi sistem agroforestri kebun campur dengan lingkungannya Disertasi. Bogor: Sekolah Pascasarjana, Institut
Pertanian Bogor. Setyorini B. 2002. Dampak pembakaran limbah pembalakan terhadap vegetasi di
vegetasi hutan sekunder-Jasinga.[Tesis]. Bogor : Fakultas Kehutanan, Institut Pertanian Bogor.
Sitorus Santun RP. 2003. Kualitas, Degradasi Dan Rehabilitasi Tanah. Progam Pascasarjana Institut pertanian Bogor.
Strom L, Owen AG, Godbold DL, Jones DL. 2005. Organic acid bahaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol
Biochem 37:2046-2054. Sunarno B, dan Rugayah. 1992. Flora Taman Nasional Gunung Gede-
Pangrango. Herbarium Bogoriense. Puslitbang Biologi - LIPI. Bogor. Supranto J. 2004. Analisis Multi Variat, Arti dan Interpretasi. Jakarta : PT.
Rineka. Syamsuwida D, Nurhasybi, Bramasto Y, Danu, Abidin AZ. 2007. Kajian
Komprehensif Benih Tanaman Hutan Jenis-jenis Konifer. DepHut. BPTP. BOGOR.
Synnott TJ. 1979. A Manual of Permanent Plot Procedure for Tropical Rainforests. Commonwealth Forestry Institute, University of Oxford, p.67.
Taiz L, Zieger E. 2002. Plant Physiologi 3
�
Edition. Massachusetts: Sinauer Associates.
Tantra IGM. 1981. Flora Pohon Indonesia Bogor. Bogor: Balai Penelitian Hutan. Tjasyono BHK. 2004. Klimatologi. Bandung: ITB Pr.
Tjitrosedirdjo S. 1984. Pengelolaan Gulma Perkebunan. PT Gramedia, Jakarta. Tucker NIJ, Murphy TM. 1997. The effects of ecological rehabilitation on
vegetation recruitment: some observations from the Wet Tropics of North Queensland. Forestry Ecology and Management 99: 133-152
Wibowo C. 2005. Hubungan antara keberadaan Saninten Castanopsis argantea Blume dengan Beberapa Sifat Tanah Kasus di Taman Nasional Gede
Pangrango, Jawa Barat Disertasi. Progam Pascasarjana, Institut Pertanian Bogor.
Woodland DS. 1997. Contemporary Plant Systematics 2
nd
ed. Michigan: Andrews University Press.
Yano K, Takaki M. 2005. Mycorrhizal alleviation of acid soil stress in the sweet potato Ipomoea batatas. Soil Biol Biochem 37:1569-1572.
Zuidam RA, Zuidam Van C. 1979. Terrain analysis and classification using aerial photographs a geomorphological approach, ITC- Textbook of photo
interpretation vol. VII. Amsterdam, the Netherlands.
LAMPIRAN
Lampiran 1 Analisis PCA Spesies Dacrycarpus imbricatus
Principal Component Analysis: Tinggi, Diameter, Luas tajuk, Intensitas cahaya, Suhu, Kelembaban, Naungan, LCR, dan Kemiringan.
Eigenanalysis of the Correlation Matrix Eigenvalue 4.8289 1.3182 1.0385 0.7723 0.6169 0.2054 0.1142
0.0704 Proportion 0.537 0.146 0.115 0.086 0.069 0.023 0.013
0.008 Cumulative 0.537 0.683 0.798 0.884 0.953 0.976 0.988
0.996 Eigenvalue 0.0353
Proportion 0.004 Cumulative 1.000
Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Tinggi 0.419 -0.230 -0.047 -0.015 -0.264 -0.149 0.303 -0.176
Diameter 0.403 -0.231 -0.133 0.091 -0.362 -0.216 0.314 -0.224
L.Tajuk 0.388 -0.233 -0.023 -0.267 -0.252 0.646 -0.264 0.412
Intensitas 0.295 -0.226 -0.079 0.517 0.673 0.247 0.251 0.107
SUHU 0.295 0.605 0.111 0.180 -0.064 0.405 -0.123 -0.565
Kelembaban 0.306 0.598 0.146 0.075 -0.074 -0.255 0.254 0.622
Naungan 0.135 -0.148 0.839 -0.378 0.244 -0.024 0.167 -0.126
Kemiringan -0.221 -0.188 0.482 0.679 -0.434 0.074 -0.112 0.121
LCR 0.420 -0.085 0.053 0.110 0.162 -0.466 -0.746 -0.017
Variable PC9 Tinggi 0.745
Diameter -0.657 L.Tajuk -0.053
Intensitas -0.020 SUHU 0.007
Kelembaban -0.009 Naungan -0.092
Kemiringan 0.046 LCR 0.006
Lampiran 2 Analisis PCA Spesies Schima wallichii
Principal Component Analysis: Tinggi, Diameter, Luas Tajuk, Intensitas cahaya, Suhu, Kelembaban, Naungan, LCR, dan Kemiringan
Eigenanalysis of the Correlation Matrix Eigenvalue 2.9637 1.8963 1.1441 1.0858 0.6333 0.5073 0.4232
0.2181 Proportion 0.329 0.211 0.127 0.121 0.070 0.056 0.047
0.024 Cumulative 0.329 0.540 0.667 0.788 0.858 0.915 0.962
0.986 Eigenvalue 0.1282
Proportion 0.014 Cumulative 1.000
Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Tinggi 0.467 -0.167 -0.157 -0.224 0.006 0.174 -0.544 -0.588
Diameter 0.273 -0.312 -0.443 0.285 0.540 0.062 0.462 -0.059
L.Tajuk 0.487 -0.159 0.048 -0.251 0.068 0.337 -0.117 0.686
Intensitas 0.283 -0.019 0.400 0.602 0.259 -0.427 -0.320 0.036
SUHU -0.407 -0.435 0.061 -0.109 0.280 0.147 -0.007 -0.224
Kelembaban -0.254 -0.497 0.243 -0.331 0.273 -0.288 -0.225 0.204
Naungan 0.169 0.424 -0.091 -0.541 0.390 -0.517 0.135 -0.061
Kemiringan -0.227 0.478 0.185 0.062 0.575 0.517 -0.225 0.004
LCR 0.281 -0.072 0.715 -0.156 -0.030 0.179 0.506 -0.291
Variable PC9 Tinggi -0.087
Diameter -0.198 L.Tajuk 0.265
Intensitas 0.208 SUHU 0.692
Kelembaban -0.520 Naungan 0.222
Kemiringan -0.184 LCR -0.082
Lampiran 3 Analisis PCA Spesies Altingia excelsa
Principal Component Analysis: Tinggi, Diameter, Luas Tajuk, Intensitas cahaya, Suhu, Kelembaban, Naungan, LCR, dan Kemiringan
Eigenanalysis of the Correlation Matrix Eigenvalue 4.2031 1.8482 1.1710 0.5478 0.4030 0.3310 0.3060
0.0982 Proportion 0.467 0.205 0.130 0.061 0.045 0.037 0.034
0.011 Cumulative 0.467 0.672 0.802 0.863 0.908 0.945 0.979
0.990 Eigenvalue 0.0917
Proportion 0.010 Cumulative 1.000
Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Tinggi 0.395 -0.140 -0.350 -0.026 0.238 -0.312 0.522 0.404
Diameter 0.402 -0.121 0.070 -0.580 -0.295 -0.104 -0.360 -0.226
L.Tajuk 0.393 -0.171 0.056 -0.226 0.635 0.522 -0.131 0.007
Intensitas 0.398 -0.072 -0.076 0.351 -0.580 0.572 0.101 0.184
SUHU -0.162 -0.658 -0.021 0.097 0.012 0.103 0.377 -0.602
Kelembaban -0.250 -0.416 0.492 -0.381 -0.192 0.027 0.188 0.527
Naungan 0.156 0.539 0.425 -0.219 -0.029 0.107 0.601 -0.287
Kemiringan -0.248 0.109 -0.663 -0.533 -0.202 0.207 0.177 -0.035
LCR 0.441 -0.153 0.014 0.035 -0.194 -0.476 0.017 -0.168
Variable PC9 Tinggi -0.334
Diameter -0.451 L.Tajuk 0.262
Intensitas -0.014 SUHU -0.127
Kelembaban 0.162 Naungan 0.002
Kemiringan 0.293 LCR 0.698
Lampiran 4 Analisis PCA Presentase hidup 3 spesies tanaman dengan parameter Lingkungan
Principal Component Analysis: Tinggi, Diameter, Luas Tajuk, Intensitas cahaya, Suhu, Kelembaban, Naungan, LCR, dan Kemiringan
Eigenanalysis of the Correlation Matrix
Eigenvalue 5.6257 4.3743 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000
Proportion 0.563 0.437 0.000 0.000 0.000 0.000 -0.000 -0.000
Cumulative 0.563 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Eigenvalue -0.0000 -0.0000 Proportion -0.000 -0.000
Cumulative 1.000 1.000
Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7
Tinggi 0.394 -0.170 0.391 -0.601 -0.347 0.146 -0.121
Diameter 0.375 -0.218 -0.434 0.030 -0.501 -0.498 -0.020
L.Tajuk -0.124 -0.457 0.554 0.341 -0.082 -0.287 -0.306
Intensitas 0.310 0.324 -0.136 -0.155 0.099 -0.211 0.122
SUHU 0.397 0.162 0.360 0.009 0.440 -0.418 0.026
Kelembaban 0.388 0.187 -0.135 0.274 0.275 0.071 -0.566
Naungan 0.210 -0.415 0.017 0.101 0.312 -0.057 0.668
Kemiringan 0.137 0.452 0.294 0.539 -0.496 0.050 0.308
LCR 0.220 -0.408 -0.292 0.338 0.015 0.230 -0.100
Persentase Hidup 0.417 -0.073 0.117 0.088 0.004 0.605 0.069
Variable PC8 PC9 PC10 Tinggi 0.304 -0.014 -0.230
Diameter -0.093 0.144 0.308 L.Tajuk -0.169 -0.368 0.079
Intensitas -0.314 -0.724 -0.255 SUHU -0.227 0.501 -0.123
Kelembaban 0.510 -0.151 0.192 Naungan 0.420 -0.180 0.136
Kemiringan 0.185 0.033 -0.149 LCR -0.128 0.115 -0.702
Persentase Hidup -0.483 -0.005 0.442
Lampiran 5 Analisis PCA Interaksi 3 spesies tanaman dengan parameter lingkungan
Principal Component Analysis: Tinggi, Diameter, Luas Tajuk, Intensitas cahaya, Suhu, Kelembaban, Naungan, LCR, Kemiringan
Eigenanalysis of the Correlation Matrix Eigenvalue 4.7118 4.2882 0.0000 0.0000 -0.0000 -0.0000 -0.0000
-0.0000 Proportion 0.524 0.476 0.000 0.000 -0.000 -0.000 -0.000
-0.000 Cumulative 0.524 1.000 1.000 1.000 1.000 1.000 1.000
1.000 Eigenvalue -0.0000
Proportion -0.000 Cumulative 1.000
Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Tinggi 0.334 -0.332 0.123 -0.436 -0.337 -0.523 -0.286 -0.307
Diameter 0.297 -0.369 0.521 -0.159 0.367 -0.017 0.240 0.497
L.Tajuk -0.295 -0.371 -0.534 -0.496 0.215 -0.004 0.419 -0.001
Intensitas 0.433 0.165 0.171 -0.027 0.217 0.264 0.295 -0.356
SUHU 0.460 -0.024 -0.282 -0.308 -0.176 0.651 -0.204 0.018
Kelembaban 0.461 0.003 -0.411 0.362 0.370 -0.365 0.165 -0.238
Naungan 0.057 -0.479 -0.237 0.337 0.240 0.099 -0.555 0.226
Kemiringan 0.306 0.361 -0.308 -0.054 -0.290 -0.269 0.124 0.651
LCR 0.070 -0.477 0.003 0.442 -0.590 0.133 0.453 -0.030
Variable PC9 Tinggi 0.098
Diameter -0.199 L.Tajuk 0.148
Intensitas 0.652 SUHU -0.341
Kelembaban -0.365 Naungan 0.414
Kemiringan 0.288 LCR 0.013
Lampiran 6 Laju Pertumbuhan
tanaman
ANOVA
Sumber Keragaman
Jumlah Kuadrat
Derajat bebas
Kuadrat Tengah
F Hitung P value
Tinggi Between
Groups .007
2 .004 21.668
.000 Within Groups
.012 72
.000 Total
.020 74
Diameter Between Groups
.006 2
.003 20.963 .000
Within Groups .010
72 .000
Total .016
74 LTajuk
Between Groups
.001 2
.000 .257
.774 Within Groups
.103 72
.001 Total
.104 74
Tinggi
Duncan Spesies
N Tingkat Kepercayaan
α = 0.05 1
2 3
Altingia excelsa 25
0.201 Schima wallichii
25 0.323
Dacrycarpus imbricatus 25
0.451 Sig.
1.000 1.000
1.000
Diameter
Duncan
Spesies N
Tingkat Kepercayaan α = 0.05
1 2
Altingia excelsa 25
0.440 Dacrycarpus imbricatus
25 0.485
Schima wallichii 25
0.622 Sig.
.076 1.000
Luas Tajuk
Duncan Spesies
N Tingkat Kepercayaan
α = 0.05 1
Altingia excelsa 25
0.484 Schima wallichii
25 0.546
Dacrycarpus imbricatus 25
0,571 Sig.
.542
Lampiran 7 Analisis Kesehatan tanaman
LCR pengamatan 1
Duncan
Spesies N
Tingkat Kepercayaan α= 0.05
1 2
3 Schima wallichii
35 50.45
Altingia excelsa 35
73.17 Dacrycarpus imbrikatus
35 71.15
Sig. 1.000
1.000 1.000
LCR Pengamatan 2
Duncan
Spesies N
Tingkat Kepercayaan α= 0.05
1 2
3
Schima wallichii 35
49.99 Altingia excelsa
35 59.93
Dacrycarpus imbricatus 35
80.11 Sig.
1.000 1.000
1.000
LCR Pengamatan 3
Duncan
Spesies N
Tingkat Kepercayaan α = 0.05
1 Altingia excelsa
25 69.3288
Dacrycarpus imbricatus 25
71.5108 Schima wallichii
25 77.2288
Sig. .060
Lampiran 8 Analisis Pertumbuhan tanaman Luas tajuk
Duncan
Spesies N
Tingkat Kepercayaan α = 0.05
1 2
Shcima wallichii 35
16.8866 Dacrycarpus imbricatus
35 34.0204
Altingia excelsa 35
37.4114 Sig.
1.000 .413
diameter
Duncan
Pohon N
Tingkat Kepercayaan α = 0.05
1 2
Dacrycarpus imbricatus 35
0.6023 Shcima wallichii
35 0.6532
Altingia excelsa 35
0.9821 Sig.
.489 1.000
Tinggi
Duncan
Pohon N
Tingkat Kepercayaan α = 0.05 1
2 3
Dacrycarpus imbricatus 35
57.6783 Schima wallichii
35 72.0840
Altingia excelsa 35
1.1345E2 Sig.
1.000 1.000
1.000
Lampiran 9 Analisis Kesintasan secara umum
ANOVA
Kesintasan umum
Jumlah Kwadrat Derajat
Bebas Kwadrat
Tengah F Hitung
P Value Between Groups
194.047 2
97.023 .372
.704 Within Groups
1566.793 6
261.132 Total
1760.840 8
Duncan Spesies
N Tingkat Kepercayaan α = 0.05
1 Dacrycarpus imbricatus
3 80.3333
Schima wallichii 3
85.6667 Altingia exselsa
3 91.7000
Sig. .436
Lampiran 10 Kekokohan pohon
ANOVA
Jumlah kuadrat Derajat
bebas Kuadrat Tengah
F Hitung P.value
kokohsatu Between Groups
2369.640 2
1184.820 10.996
.000 Within Groups
9158.856 85
107.751 Total
11528.496 87
duakokoh Between Groups
3310.866 2
1655.433 28.999
.000 Within Groups
4852.333 85
57.086 Total
8163.200 87
kokohtiga Between Groups
24.347 2
12.174 1.193
.308 Within Groups
867.109 85
10.201 Total
891.456 87
Duncan spesies
N Tingkat Kepercayaan α = 0.05
1 2
3 D. imbricatus
33 10.8884
A. excelsa 33
18.3284 S. wallichii
33 24.0205
Sig. 1.000
1.000 1.000
Kekokohan tanaman pada pengamatan ke 2
Duncan
spesies N
Tingkat Kepercayaan α = 0.05
1 2
D. imbricatus 26
9.9766 A. excelsa
33 12.2197
S. wallichii 29
24.1355 Sig.
.261 1.000
Kekokohan tanaman pada pengamatan ke 3
Duncan spesies
N Tingkat Kepercayaan α = 0.05
1 D. imbricatus
26 9.3057
A. excelsa 33
9.8315 S. wallichii
29 10.6223
Lampiran 11 Data Rata rata Iklim tahun 2009-2011dari Stasion Klimatologi per Bulan
No Bulan
R A T A - R A T A
Temperatur curah hujan
penguapan penyinaran
tek. Udara kelembapan
kecp angin
1 Jan-09
20.1 19.5
2.1 14.7
913.8 90
1 2
Peb 09 19.5
18.4 1.3
8.8 881.1
88 1
3 Mar-09
21 12.5
2.8 37.6
913.4 84
2 4
Apr-09 21.8
7.3 3.1
34.9 911.6
83 1
5 Mei-09
21.7 11.9
2.7 31.3
905.7 83
1 6
Jun-09 21.7
4.3 2.5
45.4 905.2
82 1
7 Jul-09
21.2 2.8
3.2 53.6
905.2 74
1 8
Agust-09 21.3
0.5 3.6
57.2 904.9
76 1
9 Sep-09
21.9 2.2
3.8 57.9
905.3 77
1 10
Okt-09 21.8
11.5 3.2
46 905.5
81 1
11 Nop-09
21.7 13.4
2.9 28.4
903.7 85
1 12
Des-09 22
7.4 2.3
26.1 904.6
84 1
13 Jan-10
20.6 13.4
1.8 16.5
905 90
2 14
Peb 10 21.3
19 1.9
24.2 905.3
86 1
15 Mar-10
21.5 15.2
1.8 25.8
905 87
2 16
Apr-10 22.5
2.7 3
46.2 904.7
80 2
17 Mei-10
22.4 9.3
2.2 38.8
903.3 85
2 18
Jun-10 21.5
8.5 2.3
28.5 904.7
86 2
19 Jul-10
21.3 4.5
2.4 33.9
904.3 85
2 20
Agust-10 21.3
10.2 2.2
31 904.4
86 2
21 Sep-10
21.2 12.1
2.2 28.6
904 86
2 22
Okt-10 21.3
13.7 2.4
34.8 903.4
85 1
23 Nop-10
21.5 11.4
2.2 21.4
903.3 86
1 24
Des-10 21.1
9.4 1.7
14.7 901.7
87 2
25 Jan-11
20.5 12.6
1.6 9.1
902.6 88
2 26
Peb 11 20.9
9.4 2
26.8 902.8
82 2
Rata-rata 21.3308
10.1192 2.43077 31.6231 904.404 84.0769 1.46154
Sig. .142
Lampiran 12 Kriteria sifat kimia tanah
Parameter tanah Nilai
Sangat rendah
Rendah Sedang
Tinggi Sangat tinggi
C N
CN P
2
O
5
HCl mg100g P
2
O
5
Bray ppm P
2
O
5
Olsen ppm K
2
O HCl mg100 g KTK me100g
Susunan kation Ca me100g
Mg me100g K me100g
Na me100g Kejenuhan basa
Kejenuhan Al Cad. mineral
SalinitasDHLdSm 1
0,1 5
15 4
5 10
5
2 0,3
0,1 0,1
20 5
5 1
1-2 0,1-0,2
5-10 15-20
5-7 5-10
10-20 5-16
2-5 0,4-1
0,1-0,3 0,1-0,3
20-40 5-10
5-10 1-2
2-3 0,21-0,5
11-15 21-40
8-10 11-15
21-40 17-24
6-10 1,1-2,0
0,4-0,5 0,4-0,7
41-60 1-20
11-20 2-3
3-5 0,51-
0,75 16-25
41-60 11-15
16-20 41-60
25-40
11-20 2,1-8,0
0,6-1,0 0,8-1,0
61-80 20-40
20-40 3-4
5 0,75
25 60
15 20
60 40
20 8
1 1
80 40
40 4
Sangat masam
Masam Agak
masam Netral
Agak alakalis
Alkalis
pH H
2
O 4,5
4,5-5,5 5,5-6,5
6,6-7,5 7,6-8,5 8,5
Sumber: Balai Penelitian Tanah 2009
ABSTRACT NURUL HIDAYAH. Survivorship and Growth Rate of Rasamala Altingia excelsa
Noronha, Puspa Schima wallichii DC. Korth. and Jamuju Dacrycarpus imbricatus Blume de Laub. on Degraded Land in the Upstream of Cisadane
Watershed. Under supervision of
IBNUL QAYIM and DIDIK WIDYATMOKO. Changes in land use often threaten biodiversity. A slow primary succession
can, however, be accelerated by conducting a restoration program. The aims of this study were to i obtain data of survivorship and growth rate and ii assess the
influences of environmental factors on the growth of Rasamala Altingia excelsa, Puspa Schima wallichii, and Jamuju Dacrycarpus imbricatus on a degraded
land in the upstream of Cisadane watershed. Observations were carried out two times: 6 and 12 months after planting. Survivorship percentages at different slopes
were obtained by dividing the amount of living species during the period of the observation with the total amount of plants planted at the beginning of the
observation. A
PCA biplot analysis was used to assess the interaction between
biotic and abiotic factors influencing the survivorship. Growth rate was done by measuring the height, diameter, and canopy spread of individual plants.
Assessments of biotic and abiotic environment that influence the growth rates were also conducted. The results showed that the survivorship percentages of
Rasamala, Puspa, and Jamuju were 87,18, 82,05, and 77,14, respectively. On the 40° slopes, the survivorship of Rasamala was 93,75, while those of
Puspa and Jamuju were 84,61 and 66,67 respectively. On the 60 slopes, the survivorship was 82,25 for Rasamala, 81,81 and 64,70 for Puspa and
Jamuju respectively. Higher growth rate was found in Jamuju, followed by Puspa and Rasamala. Environmental factors both biotic and abiotic significantly
influenced the three species survivorship. Plant height, diameter and canopy area had significant correlations with plant growth rates.
Key words: survivorship, growth rate, environmental factors, degraded land.