61 Sehubungan  dengan  pengembangan  marka  SNAP  untuk  marka  ketahanan
terhadap  penyakit,  marka  molekuler  berbasis  SNP  sebaiknya  dikembangkan  dari beberapa  gen  yang  mempunyai  peranan  dalam  ketahanan  terhadap  penyakit.
Sebagai  contoh  implementasi  marka  SNAP  berbasis  SNP  yang  berasal  dari  gen Pto,  dapat  digabungkan  dengan  SNP  yang  berasal  dari  gen  chitinase  dan
β-1,3- glucanase Sutanto et al. 2013.
5.4 Kesimpulan
Fragmen  gen  Pto  asal  kacang  bogor  yang  berukuran  555  pb,  berhasil diidentifikasi  adanya  22  posisi  SNP,  tetapi  hanya  6  posisi  SNP  yang  digunakan
untuk mendisain primer SNAP. Berdasarkan 6 posisi SNP terpilih, dihasilkan 12 pasang primer SNAP untuk pengembangan marka SNAP kacang bogor. Sebanyak
12  pasang  primer  yang  didapat,  9  pasang  primer  SNAP  terbukti  efektif  untuk mengamplifikasi  DNA  genom  kacang  bogor,  sedangkan  3  pasang  primer  SNAP
lainnya  tidak  berhasil  mengamplifikasi  DNA  genom  kacang  bogor.  Berdasarkan lokus  SNP_78,  SNP_378,  SNP_481  and  SNP_510,  genotipe  kacang  bogor
mempunyai kombinasi alel yang heterozigot, dan satu lokus SNP_502 mempunyai kombinasi alel yang homozigot.
Daftar Pustaka
Amadou  HI,  Bebeli  PJ,  Kaltsikes  PJ.  2001.  Genetic  diversity  in  Bambara groundnut  Vigna  subterranea  L.  germplasm  revealed  by  RAPD  markers.
Genome. 446:995-999. Basu  S,  Roberts  JA,  Azam-Ali  SN,  Mayes  S.  2007.  Bambara  groundnut.  Di
dalam: Kole C, editor. Genome Mapping and Molecular Breeding in Plants. Volume  3:  Pulses,  Sugar  and  Tuber  Crops.  Pennsylvania  State  University
US: Springer Verlag Berlin Heidelberg. hlm 159-173.
Brough SH, Taylo, AJ, Azam-Ali SN. 1993. The potential of bambara groundnut Vigna  subterranea  in  vegetable  milk  production  and  basic  protein
functionality systems. Food Chem. 473:277-283. Brueggeman  R,  Rostoks  N,  Kudrna  D,  Kilian  A,  Han  F,  Chen  J,  Druka  A,
Steffenson B, Kleinhofs A. 2002. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc
Natl Acad Sci USA. 9914:9328-9333.
Chang  JH,  Tai  YS,  Bernal  AJ,  Lavelle  DT,  Staskawicz  BJ,  Michelmore  RW. 2002.  Functional  analyses  of  the  Pto  resistance  gene  family  in  tomato  and
the  identification  of  a  minor  resistance  determinant  in  a  susceptible haplotype. Mol. Plant Microbe Interact. 153:281-291.
Chinchilla  D,  Bauer  Z,  Regenass  M,  Boller  T,  Felix  G.  2006.  The  Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin
perception. Plant Cell. 182:465-476. Ching  A,  Caldwell  KS,  Jung  M,  Dolan  M,  Smith  OS,  Tingey  S,  Morgante  M,
Rafalski  AJ.  2002.  SNP  frequency,  haplotype  structure  and  linkage disequilibrium in elite maize inbred lines. BMC Genet. 31:19.
62 Gao  Y,  Guo  W,  Wang  L,  Zhang  T.  2006.  Isolation  and  characterization  of
resistance  and  defense  gene  analogs  in  cotton  Gossypium  barbadense  L.. Science in China Series C: Life Sciences. 496:530-542.
Jiang D, Ye Q-L, Wang F-S, Cao L. 2010. The mining of citrus EST-SNP and its application in cultivar discrimination. Agric Sci China. 92:179-190.
Kim  YJ, Lin  NC, Martin GB.  2002. Two distinct Pseudomonas effector proteins interact  with  the Pto  kinase  and activate plant immunity.  Cell. 1095:589-
598. Kurniasih  S.  2012.  Pemanfaatan  Marka  Molekuler  Untuk  Mendukung  Perakitan
Kultivar  Unggul  Kakao  Theobroma  cacao  L..  [disertasi].  Bogor  ID: Institut Pertanian Bogor.
Lanaud  C,  Risterucci  AM,  Pieretti  I,  N’goran  JAK,  Fargeas  D.  2004. Characterisation  and  genetic  mapping  of  resistance  and  defence  gene
analogs  in  cocoa  Theobroma  cacao  L..  Molecular  Breeding.  133:211- 227.
Massawe FJ, Dickinson M, Roberts JA, Azam-Ali SN. 2002. Genetic diversity in Bambara  groundnut  Vigna  subterranea  L.  Verdc.  landraces  revealed  by
AFLP markers. Genome. 456:1175-1180. Massawe  FJ,  Roberts  JA,  Azam-Ali  SN,  Davey  MR.  2003.  Genetic  diversity  in
Bambara  groundnut  Vigna  subterranea  L.  Verdc.  landraces  assessed  by Random Amplified Polymorphic DNA RAPD marker. Genetic Resources
and Crop Evolution. 507:737-741.
Miller  RNG,  Bertioli  DJ,  Baurens  FC,  Santos  CMR,  Alves  PC,  Martins  NF, Togawa  RC,  Souza-Júnior  MT,  Pappas-Júnior  GJ.  2008.  Analysis  of  non-
TIR-NBS-LRR resistance gene analogs in Musa acuminate Colla: isolation, RFLP  marker  development,  and  physical  mapping.  BMC  Plant  Biology.
81:15.
Mkandawire CH. 2007. Review of bambara groundnut production in sub-Saharan Africa. Agricultural Journal. 24:464-470.
Molosiwa  OO.  2012.  Genetic  Diversity  and  Population  Structure  Analysis  of Bambara  Groundnut  Vigna  subterranea  L.  Verdc.  Landraces  Using
Morpho-Agronomic Characters
and SSR
Markers. [disertasi].
Loughborough,  Leicestershire  UK:  The  University  of  Nottingham  Sutton Bonington Campus.
Olukolu BA, Mayes S, Stadler F, Ng NQ, Fawole I, Dominique D, Azam-Ali SN, Abbott AG, Kole C. 2012. Genetic diversity in Bambara groundnut Vigna
subterranea L. Verdc. as revealed by phenotypic descriPTOrs and DArT marker analysis. Genetic Resources and Crop Evolution. 593:347-358.
Pedley  KF,  Martin  GB.  2003.  Molecular  basis  of  Pto-mediated  resistance  to bacterial speck disease in tomato. Annu. Rev. Phytopathol. 411:215-243.
Rabbi  IY,  Kulembeka  HP,  Masumba  E,  Marri  PR,  Ferguson  M.  2012.  An ESTderived  SNP  and  SSR  genetic  linkage  map  of  cassava  Manihot
esculenta Crantz. Theor Appl Genet. 1252:329-342. Rungnoi  O,  Suwanprasert  J,  Somta  P,  Srinives  P.  2012.  Molecular  genetic
diversity of Bambara groundnut Vigna subterranea L. Verdc. revealed by RAPD and ISSR marker analysis. SABRAO J. Breed. Genet. 441:87-101.
Salmeron  JM,  Oldroyd  GED,  Rommens  CMT,  Scofield  SR,  Kim  H-S,  Lavelle DT,  Dahlbeck  D,  Staskawicz  BJ.  1996.  Tomato  Prf  is  a  member  of  the