Pengantar Linear Programming Linear Programming

2.3. Linear Programming

2.3.1. Pengantar Linear Programming

Linear Programming adalah suatu teknik aplikasi matematika dalam menentukan pemecahan masalah yang bertujuan untuk memaksimumkan atau meminimumkan sesuatu yang dibatasi oleh batasan-batasan tertentu, dimana hal ini dikenal juga sebagai teknik optimasi [8]. Linear Programming merupakan suatu model umum yang dapat digunakan dalam pemecahan masalah pengalokasian sumber-sumber yang terbatas secara optimal [10]. Keberhasilan suatu teknik operasi pada akhirnya diukur berdasarkan penyebaran penggunaannya sebagai alat pengambilan keputusan. Sejak diperkenalkan diakhir 1940-an, Linear Programming telah terbukti merupakan salah satu alat riset operasi yang paling efektif. Keberhasilannya berakar dari keluwesannya dalam menjabarkan berbagai situasi kehidupan nyata diberbagai bidang pekerjaan, yaitu militer, industri, pertanian, transportasi, ekonomi, kesehatan, dan bahkan ilmu sosial dan perilaku. Disamping itu, tersedianya program komputer yang sangat efisien untuk memecahkan masalah-masalah Linear Programming yang sangat luas merupakan faktor penting dalam tersebarnya penggunaan teknik ini. Kegunaan Linear Programming adalah lebih luas daripada aplikasinya semata. Pada kenyataannya, Linear Programming harus dipandang sebagai dasar penting untuk pengembangan teknik-teknik operasi riset lainnya. Linear Programming adalah sebuah alat deterministik, yang berarti bahwa sebuah parameter model diasumsikan diketahui dengan pasti. Tetapi dalam kehidupan nyata, jarang seseorang menghadapi masalah di mana terdapat kepastian yang sesungguhnya. Teknik Linear Programming mengkompetisi kekurangan ini dengan memberikan analisis pasca optimum dan analisis parametrik yang sistematis untuk memungkinkan pengambil keputusan yang bersangkutan untuk menguji sensitivitas Universitas Sumatera Utara pemecahan optimum yang statis terhadap perubahan diskrit atau kontinu dalam berbagai parameter dari model tersebut. Pada intinya, teknik tambahan ini memberikan dimensi dinamis pada sifat pemecahan Linear Programming yang optimum. Tujuan dari Linear Programming adalah suatu hasil yang mencapai tujuan yang ditentukan optimal dengan cara yang paling baik diantara semua alternatif yang mungkin dengan batasan sumber daya yang tersedia. Meskipun mengalokasikan sumber-sumber daya kepada kegiatan-kegiatan merupakan jenis aplikasi yang paling umum, Linear Programming mempunyai banyak aplikasi penting lainnya. Sebenarnya, setiap masalah yang metode matematisnya sesuai dengan format umum bagi Linear Programming merupakan masalah bagi Linear Programming. Selanjutnya suatu prosedur penyelesaian yang sangat efisien, dinamakan metode simpleks, tersedia untuk menyelesaiakan masalah-masalah Linear Programming. Linear Programming merupakan masalah pemrograman yang harus memenuhi tiga kondisi berikut: 1. Variabel-variabel keputusan yang terlibat harus positif. 2. Kriteria-kriteria untuk memilih nilai terbaik dari variabel keputusan dapat diekspresikan sebagai fungsi linier. Fungsi kriteria ini biasa disebut fungsi objektif. 3. Aturan-aturan operasi yang mengarahkan proses-proses dapat diekspresikan sebagai suatu set persamaan atau pertidaksamaan linier. Set tersebut dinamakan fungsi pembatas.

2.3.2. Kelebihan dan Kekurangan Linear Programming