Mengeksplorasi ide-ide matematis Upaya Penerapan Strategi MHM (Mathematical Habits of Mind) terhadap Kemampuan Berpikir Kreatif Matematis Siswa

dapat mengubah informasi soal semula dengan tetap mempertahankan situasi soal atau sebaliknya mengubah situasi soal dengan tetap mempertahankan informasi soal semula. Kemampuan bertanya merupakan salah satu indikator kemampuan berpikir kreatif. Haylock 1997 mengemukakan cara mengukur kemampuan berpikir kreatif dengan memberikan tugas kepada siswa untuk membuat pertanyaan-pertanyaan berdasarkan informasi yang diberikan. Dengan demikian dengan mengembangkan kebiasaan siswa untuk mengajukan pertanyaan merupakan salah satu cara untuk mengembangkan kemampuan berpikir kreatifnya. 5. Mengkonstruksi contoh Aktivitas berikutnya dalam strategi MHM adalah mengkonstruksi contoh. Menurut Liz et al 2006, pemberian contoh berperan penting dalam pembelajaran matematika. Suatu konsep yang abstrak dan kompleks menjadi lebih mudah dipahami bila diberikan contoh yang sesuai. Penggunaan contoh dalam pembelajaran matematika merujuk pada istilah eksemplifikasi exemplification. Menurut Liz et al 2005, eksemplifikasi adalah mendeskripsikan suatu situasi menjadi lebih sepesifik untuk merepresentasikan suatu situasi yang bersifat umum. Contoh merupakan deskripsi atau ilustrasi spesifik dari suatu konsep yang menjadikan konsep tersebut lebih dikenal dan dipahami siswa. Menurut Liz et al 2006, terdapat 3 jenis contoh, yaitu contoh umum generic example, contoh penyangkal, dan atau non-contoh. Contoh generik adalah contoh suatu konsep, prosedur, atau teorema yang bersifat umum. Contoh penyangkal digunakan untuk menguji berlakunya suatu dugaan atau konjektur. Sedangkan noncontoh digunakan untuk memperjelas definisi suatu konsep. Memberikan contoh merupakan aktivitas yang biasa dilakukan guru. Di sisi lain, siswa relatif jarang diberikan kesempatan untuk mengkonstruksi contoh-contoh mereka sendiri. Terdapat beberapa manfaat yang dapat diperoleh dengan memberikan kesempatan kepada siswa untuk mengkonstruksi contoh mereka sendiri. Menurut Liz et al 2005 hal ini dapat digunakan untuk mendeteksi ketidakpahaman siswa terhadap suatu konsep. Sedangkan menurut Dahlberg dan Housman Liz et al, 2005, mengkonstruksi contoh merupakan tugas yang kompleks yang menuntut kemampuan siswa untuk mengaitkan beberapa konsep. Jika siswa tidak diberikan kesempatan untuk mengkonstruksi berbagai jenis contoh, terlebih contoh penyangkal atau noncontoh, maka siswa dapat membuat generalisasi yang tidak tepat. Dalam mengkonstruksi contoh, siswa mengeksplorasi dan mengkombinasikan berbagai konsep yang telah mereka ketahui untuk membuat contoh yang menarik dan menantang. Aktivitas demikian akan mendorong siswa untuk membuat sebanyak mungkin contoh yang memenuhi kriteria tertentu yang bersifat unik dan beragam. Hal ini memenuhi aspek-aspek kemampuan berpikir kreatif, yakni kelancaran, fleksibilitas, dan keunikan.

2. Kemampuan Berpikir Kreatif Matematis a. Pengertian Kemampuan Berpikir Kreatif Matematis

Apa itu berpikir kreatif? Isaksen et al Grieshober, 2004 mendefinisikan berpikir kreatif sebagai proses konstruksi ide yang menekankan pada aspek kelancaran, keluwesan, kebaruan, dan keterincian. Menurut McGregor 2007, berpikir kreatif adalah berpikir yang mengarah pada pemerolehan wawasan baru, pendekatan baru, perspektif baru, atau cara baru dalam memahami sesuatu. Sementara menurut Martin 2009, kemampuan berpikir kreatif adalah kemampuan untuk menghasilkan ide atau cara baru dalam menghasilkan suatu produk. Pada umumnya, berpikir kreatif dipicu oleh masalah-masalah yang menantang. 12 Berpikir kreatif merupakan suatu proses yang digunakan ketika kita mendatangkan atau memunculkan suatu ide baru. Hal itu menggabungkan ide-ide yang sebelumnya belum dilakukan. 13 Berpikir kreatif juga dapat 12 Ali Mahmudi, 2010, Megukur Kemampuan Berpiki treatf Matematis, hal 2 pdf 13 Tatang Yuli Eko Siswono.”Desain Tugas untuk Mengidentifikasi Kemampuan Berpikir Kreatif Siswa dalam Matematika” Jurusan Matematika FMIPA.Universitas Negeri Surabaya.hal: 1. http:tatagyes.files.wordpress.com200710tatag_jurnal_unej.pdf 23 September 2013

Dokumen yang terkait

Pengaruh Strategi Heuristik Terhadap Kemampuan Berpikir Kreatif Matematis Siswa

1 30 205

Pengaruh Strategi Mathematical Habits of Mind (MHM) terhadap Kemampuan Berpikir Kreatif Matematis Siswa

3 31 246

Pengaruh Habits Of Mind Terhadap Kemampuan Generalisasi Matematis Siswa

24 86 196

MENGEMBANGKAN KEMAMPUAN BERPIKIR LOGIS, KREATIF, DAN HABITS OF MIND MATEMATIS MELALUI PEMBELAJARAN BERBASIS MASALAH : Eksperimen terhadap Siswa Madrasah Aliyah.

7 24 86

PENGEMBANGAN PERANGKAT PEMBELAJARAN MATEMATIKA BERBASIS MASALAH DENGAN STRATEGI MATHEMATICAL HABITS OF MIND (MHM)PADA MATERI SPLDV.

0 1 118

REFORMULASI STRATEGI HABITS OF MIND MATEMATIS TERHADAP KEMAMPUAN MATHEMATICAL CRITICAL THINKING DALAM MEWUJUDKAN GENERASI EMAS BERKARAKTER

0 0 19

PENERAPAN STRATEGI MHM (MATHEMATICAL HABITS OF MIND) BERBANTUAN GEOGEBRA UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS DAN PEMECAHAN MASALAH MATEMATIS SERTA KEMANDIRIAN BELAJAR SISWA SMA - repo unpas

0 0 7

PENGARUH STRATEGI PEMBELAJARAN MHM (MATHEMATICAL HABITS OF MIND) BERBASIS MASALAH TERHADAP KEMAMPUAN BERPIKIR KREATIF DITINJAU DARI DISPOSISI MATEMATIS PESERTA DIDIK KELAS VIII MTs N 2 BANDAR LAMPUNG TAHUN PELAJARAN 2016/2017 - Raden Intan Repository

0 3 150

HUBUNGAN ANTARA MATHEMATICAL HABITS OF MIND (MHM) DENGAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA SMP NEGERI 1 BANYUMAS

1 3 15

BAB II KAJIAN TEORITIK A. Deskripsi Konseptual 1. Mathematical Habits of Mind - HUBUNGAN ANTARA MATHEMATICAL HABITS OF MIND (MHM) DENGAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA SMP NEGERI 1 BANYUMAS - repository perpustakaan

5 17 12