3.5 Metode Analisis Data
3.5.1 Analisis Statistik Deskriptif
Analisis statistik deskriptif digunakan untuk melihat karakteristik dari persebaran data sebelum pengujian dilakukan. Penelitian ini menjabarkan rata-rata
mean, standar deviasi, varians, maksimum, minimum, sum range, kurtosis keruncingan,
dan skewness
kemencengan distribusi,
sehingga secara
kontekstual dapat lebih mudah dimengerti oleh pembaca.
3.5.2 Uji Asumsi Klasik
Uji asumsi klasik digunakan dalam penelitian ini untuk menguji apakah data memenuhi asumsi klasik. Uji asumsi klasik bertujuan untuk menghindari
estimasi yang bias karena tidak semua data dapat diterapkan dengan melakukan analisis regresi. Dalam penelitian ini menggunakan pengujian yang meliputi uji
normalitas, uji autokorelasi, uji multikolinieritas, dan uji heteroskedastisitas. 1. Uji Normalitas
Uji Normalitas bertujuan untuk menguji apakah dalam model regresi, variabel pengganggu atau residual memiliki distribusi normal. Proses uji
normalitas data dilakukan dengan uji statistik non-parametrik Kolmogorov- Smirnov K-S dan memperhatikan penyebaran data titik pada normal p-plot of
Regression standardized residual dari variabel independen, dimana:
a. Jika data menyebar di sekitar garis diagonal dan mengikuti arah garis diagonal atau grafik histogramnya menunjukkan pola distribusi normal, maka
model regresi memenuhi asumsi normalitas. b. Jika data menyebar jauh dari garis diagonal dan atau tidak mengikuti garis
diagonal atau grafik histogram tidak menunjukkan pola distribusi normal, maka model regresi tidak memenuhi asumsi normalitas.
2. Uji Autokorelasi Uji autokorelasi digunakan untuk mengetahui apakah dalam model regresi
linear terjadi korelasi antara kesalahan pengganggu pada periode t dengan kesalahan pada periode t-1 sebelumnya. Model regresi yang baik adalah regresi
yang bebas dari autokorelasi. Untuk mendeteksi terjadinya autokorelasi dapat dilakukan dengan pengujian terhadap nilai uji Durbin-Watson Uji DW dengan
ketentuan sebagai berikut:
Tabel 3.4 Nilai Durbin-Watson
Hipotesis nol Keputusan
Jika Tdk ada autokorelasi positif
Tolak 0 d dl
Tdk ada autokorelasi positif No decision
dl ≤ d ≤ du
Tdk ada korelasi negatif Tolak
4 – dl d 4 Tdk ada korelasi negatif
No decision 4-du
≤ d ≤ 4-dl Tdk ada autokorelasi, positif atau negatif
Tidak ditolak du d 4-du
Sumber: Ghozali, 2011 3. Uji Multikolinieritas
Uji multikolinieritas bertujuan untuk menguji apakah model regresi ditemukan adanya korelasi antar variabel bebas independen. Untuk mendeteksi
adanya masalah multikolinearitas dapat dilihat dari nilai tolerance dan lawannya,
yaitu VIF Variance Inflation Factor. Nilai tolerance yang rendah sama dengan nilai VIF yang tinggi karena VIF= 1tolerance.
Nilai cutoff
yang dipakai
untuk menandai
adanya faktor-faktor
multikolinearitas adalah nilai tolerance ≤ 0.10 atau sama dengan nilai VIF ≥10.
Model regresi yang baik tidak terdapat masalah multikolinearitas atau adanya hubungan yang sempurna di antara variabel-variabel independennya.
4. Uji Heteroskedastisitas Uji heteroskedastisitas digunakan untuk menguji apakah model regresi
terjadi ketidaksamaan variance dari residual satu pengamatan ke pengamatan yang lain Ghozali, 2011. Jika varians dari residual satu pengamatan ke
pengamatan lain tetap, maka disebut homoskedastisitas dan jika berbeda disebut heteroskedastisitas. Model regresi yang baik adalah yang homoskedastisitas.
Pengujian ini bertujuan untuk mengetahui korelasi variabel independen dengan nilai absolute residual. Untuk mendeteksi heteroskedastisitas dengan melihat ada
tidaknya pola tertentu pada grafik scatterplot antara SRESID dan ZPRED dimana sumbu Y adalah Y yang telah diprediksi, dan sumbu X adalah residual yang telah
di-studentized, dimana: a. Jika ada pola tertentu, seperti titik-titik yang ada membentuk pola tertentu
yang teratur
bergelombang, melebar
kemudian menyempit,
maka mengindikasikan telah terjadi heteroskedastisitas.
b. Jika tidak ada pola yang jelas, serta titik-titik menyebar di atas dan di bawah angka 0 pada sumbu Y, maka tidak terjadi heteroskedastisitas.
3.5.3 Pengujian Hipotesis