Distribusi Weibull KESIMPULAN DAN SARAN

Erna Rutiah Novarina : Sistem Perawatan Berbasis Pencegahan Menurut Rancangan Modularity Task Dalam Upaya Penurunan Biaya Perawatan Pada PT. Cakra Compact Alumunium Industries, 2010.

d. Distribusi Weibull

N ti Ti = LNti FTi Yi = LN{-LN [1-FTi]} Ti² Yi² Ti.Yi 1 1623 7,3920 0,0455 -3,0679 54,6421 9,4118 -22,6778 2 1668 7,4194 0,1104 -2,1458 55,0472 4,6046 -15,9207 3 1713 7,4460 0,1753 -1,6463 55,4429 2,7102 -12,2582 4 1821 7,5071 0,2403 -1,2918 56,3572 1,6687 -9,6976 5 2046 7,6236 0,3052 -1,0103 58,1199 1,0206 -7,7019 6 2146 7,6714 0,3701 -0,7717 58,8498 0,5955 -5,9197 7 2356 7,7647 0,4351 -0,5603 60,2909 0,3139 -4,3505 8 2393 7,7803 0,5000 -0,3665 60,5331 0,1343 -2,8516 9 2490 7,8200 0,5649 -0,1836 61,1530 0,0337 -1,4358 10 2499 7,8236 0,6299 -0,0061 61,2094 0,0000 -0,0479 11 2537 7,8387 0,6948 0,1713 61,4458 0,0293 1,3425 12 2540 7,8399 0,7597 0,3549 61,4643 0,1260 2,7824 13 2571 7,8521 0,8247 0,5545 61,6547 0,3075 4,3542 14 2613 7,8683 0,8896 0,7902 61,9094 0,6243 6,2171 15 2645 7,8804 0,9545 1,1285 62,1011 1,2735 8,8931 TOTAL 115,5277 -8,0509 890,2209 22,8541 -59,2724 Index Of Fit a. Sxy =             − ∑ ∑ ∑ = = = N i N i N i Yi Ti TiYi N 1 1 1 . = 15.-59,2724 – 115,5277.-8,0509 = 41,0121 b. Sxx = 2 1 1 2       − ∑ ∑ = = N i N i Ti Ti N = 15 890,2209 – 115,5277 2 = 6,6757 c. Syy = 2 1 1 2       − ∑ ∑ = = N i N i Yi Yi N = 15 22,8541 – -8,0509 2 = 277,9953 d. Sehingga Index Of Fit r = Syy Sxx Sxy . = 9953 , 277 . 6757 , 6 0121 , 41 = 0,9520 Erna Rutiah Novarina : Sistem Perawatan Berbasis Pencegahan Menurut Rancangan Modularity Task Dalam Upaya Penurunan Biaya Perawatan Pada PT. Cakra Compact Alumunium Industries, 2010.

3. Limit Switch a. Distribusi Normal

N Ti FTi Yi Ti² Yi² Ti.Yi 1 1954 0,0455 -1,6906 3818116 2,8582 -3303,4741 2 2228 0,1104 -1,2245 4963984 1,4993 -2728,0948 3 2338 0,1753 -0,9333 5466244 0,8711 -2182,1265 4 3253 0,2403 -0,7055 10582009 0,4977 -2294,8843 5 3300 0,3052 -0,5095 10890000 0,2596 -1681,4073 6 3310 0,3701 -0,3315 10956100 0,1099 -1097,2967 7 3338 0,4351 -0,1635 11142244 0,0267 -545,7413 8 3440 0,5000 0,0000 11833600 0,0000 0,0000 9 3522 0,5649 0,1635 12404484 0,0267 575,8241 10 3716 0,6299 0,3315 13808656 0,1099 1231,8896 11 3723 0,6948 0,5095 13860729 0,2596 1896,9331 12 3865 0,7597 0,7055 14938225 0,4977 2726,6302 13 3868 0,8247 0,9333 14961424 0,8711 3610,1221 14 4208 0,8896 1,2245 17707264 1,4993 5152,5238 15 4217 0,9545 1,6906 17783089 2,8582 7129,3502 TOTAL 50280 0,0000 175116168 12,2451 8490,2480 Index Of Fit a. Sxy =             − ∑ ∑ ∑ = = = N i N i N i Yi Ti TiYi N 1 1 1 . = 15.8490,2480 – 50280.0 = 127353,7197 b. Sxx = 2 1 1 2       − ∑ ∑ = = N i N i Ti Ti N = 15 175116168 – 50280 2 = 98664120 c. Syy = 2 1 1 2       − ∑ ∑ = = N i N i Yi Yi N = 15 12,2451 – 0 2 = 183,6758 d. Sehingga Index Of Fit r = Syy Sxx Sxy . = 6758 , 183 . 98664120 7197 , 127353 = 0,9460 Erna Rutiah Novarina : Sistem Perawatan Berbasis Pencegahan Menurut Rancangan Modularity Task Dalam Upaya Penurunan Biaya Perawatan Pada PT. Cakra Compact Alumunium Industries, 2010.

b. Distribusi Lognormal