Erna Rutiah Novarina : Sistem Perawatan Berbasis Pencegahan Menurut Rancangan Modularity Task Dalam Upaya Penurunan Biaya Perawatan Pada PT. Cakra Compact Alumunium Industries, 2010.
d. Distribusi Weibull
N ti
Ti = LNti FTi
Yi = LN{-LN [1-FTi]}
Ti² Yi²
Ti.Yi
1 1623
7,3920 0,0455
-3,0679 54,6421
9,4118 -22,6778
2 1668
7,4194 0,1104
-2,1458 55,0472
4,6046 -15,9207
3 1713
7,4460 0,1753
-1,6463 55,4429
2,7102 -12,2582
4 1821
7,5071 0,2403
-1,2918 56,3572
1,6687 -9,6976
5 2046
7,6236 0,3052
-1,0103 58,1199
1,0206 -7,7019
6 2146
7,6714 0,3701
-0,7717 58,8498
0,5955 -5,9197
7 2356
7,7647 0,4351
-0,5603 60,2909
0,3139 -4,3505
8 2393
7,7803 0,5000
-0,3665 60,5331
0,1343 -2,8516
9 2490
7,8200 0,5649
-0,1836 61,1530
0,0337 -1,4358
10 2499
7,8236 0,6299
-0,0061 61,2094
0,0000 -0,0479
11 2537
7,8387 0,6948
0,1713 61,4458
0,0293 1,3425
12 2540
7,8399 0,7597
0,3549 61,4643
0,1260 2,7824
13 2571
7,8521 0,8247
0,5545 61,6547
0,3075 4,3542
14 2613
7,8683 0,8896
0,7902 61,9094
0,6243 6,2171
15 2645
7,8804 0,9545
1,1285 62,1011
1,2735 8,8931
TOTAL
115,5277 -8,0509
890,2209 22,8541
-59,2724
Index Of Fit a.
Sxy =
−
∑ ∑
∑
= =
= N
i N
i N
i
Yi Ti
TiYi N
1 1
1
. = 15.-59,2724 – 115,5277.-8,0509
= 41,0121 b.
Sxx =
2 1
1 2
−
∑ ∑
= =
N i
N i
Ti Ti
N
= 15 890,2209 – 115,5277
2
= 6,6757 c.
Syy =
2 1
1 2
−
∑ ∑
= =
N i
N i
Yi Yi
N
= 15 22,8541 – -8,0509
2
= 277,9953 d.
Sehingga Index Of Fit r = Syy
Sxx Sxy
. =
9953 ,
277 .
6757 ,
6 0121
, 41
= 0,9520
Erna Rutiah Novarina : Sistem Perawatan Berbasis Pencegahan Menurut Rancangan Modularity Task Dalam Upaya Penurunan Biaya Perawatan Pada PT. Cakra Compact Alumunium Industries, 2010.
3. Limit Switch a. Distribusi Normal
N Ti
FTi Yi
Ti² Yi²
Ti.Yi
1 1954
0,0455 -1,6906
3818116 2,8582
-3303,4741 2
2228 0,1104
-1,2245 4963984
1,4993 -2728,0948
3 2338
0,1753 -0,9333
5466244 0,8711
-2182,1265 4
3253 0,2403
-0,7055 10582009
0,4977 -2294,8843
5 3300
0,3052 -0,5095
10890000 0,2596
-1681,4073 6
3310 0,3701
-0,3315 10956100
0,1099 -1097,2967
7 3338
0,4351 -0,1635
11142244 0,0267
-545,7413 8
3440 0,5000
0,0000 11833600
0,0000 0,0000
9 3522
0,5649 0,1635
12404484 0,0267
575,8241 10
3716 0,6299
0,3315 13808656
0,1099 1231,8896
11 3723
0,6948 0,5095
13860729 0,2596
1896,9331 12
3865 0,7597
0,7055 14938225
0,4977 2726,6302
13 3868
0,8247 0,9333
14961424 0,8711
3610,1221 14
4208 0,8896
1,2245 17707264
1,4993 5152,5238
15 4217
0,9545 1,6906
17783089 2,8582
7129,3502 TOTAL
50280 0,0000
175116168 12,2451
8490,2480
Index Of Fit a.
Sxy =
−
∑ ∑
∑
= =
= N
i N
i N
i
Yi Ti
TiYi N
1 1
1
. = 15.8490,2480 – 50280.0
= 127353,7197 b.
Sxx =
2 1
1 2
−
∑ ∑
= =
N i
N i
Ti Ti
N
= 15 175116168 – 50280
2
= 98664120 c.
Syy =
2 1
1 2
−
∑ ∑
= =
N i
N i
Yi Yi
N
= 15 12,2451 – 0
2
= 183,6758 d.
Sehingga Index Of Fit r = Syy
Sxx Sxy
. =
6758 ,
183 .
98664120 7197
, 127353
= 0,9460
Erna Rutiah Novarina : Sistem Perawatan Berbasis Pencegahan Menurut Rancangan Modularity Task Dalam Upaya Penurunan Biaya Perawatan Pada PT. Cakra Compact Alumunium Industries, 2010.
b. Distribusi Lognormal