Proof of Corollary 3.1.7 Proofs of Theorem 3.1.5, Lemma 3.1.6

it is clear that i X i t t ≥0 is a bounded martingale, and hence there exists a random variable Z such that lim t →∞ E Z − i X i t 2 = 0. 3.6.3 We are therefore done if we can show that lim t →∞ E |X i t − X j t | 2 = 0 ∀i, j ∈ . 3.6.4 We will establish 3.6.4 by showing that each sequence t n → ∞ has a subse- quence t ˜nm such that lim p →∞ E |X i t ˜np − X j t ˜np | 2 = 0 ∀i, j ∈ . 3.6.5 So let us fix a sequence t n → ∞. Lemma 5.1 and Remark 5.2 from chapter 4 of [16] imply the existence of a subsequence t nm and a process ˜ X , such that in the sense of weak convergence on path space X t nm + t t ≥0 ⇒ ˜Xt t ≥0 as m → ∞, 3.6.6 where ˜ X has sample paths in D K [0, ∞ and solves the martingale problem for the operator A. Formula 3.6.3 together with the continuous sample paths of ˜ X implies that for all t ≥ 0 i X i t nm + t − i X i t nm ⇒ 0 as m → ∞, 3.6.7 and therefore i X i t − i X i = 0 a.s. t ≥ 0. 3.6.8 Using the fact that i ˜X i t t ≥0 is a martingale and the fact that ˜ X solves the martingale problem for A, we see that E i ˜X i t − i X i 2 = E i ˜X i t 2 − E i X i 2 = i t E[tr w ˜ X i s]ds. 3.6.9 We use this, together with 3.6.8 and the fact that tr w ≥ 0 to conclude that E[tr w ˜ X i t] = 0 i ∈ , t ≥ 0. 3.6.10 The fact that ˜ X solves the martingale problem for the operator A means that for each f ∈ C 2 K f ˜ X t − f ˜X0 − t A f ˜ X sds 3.6.11 is a martingale. Here A f ˜ X s = i j α a j − i ˜X α j s − ˜X α i s ∂ ∂ x α i f ˜ X s + i αβ w αβ ˜ X i s ∂ 2 ∂ x α i ∂ x β i f ˜ X s, 3.6.12 where the second term is zero by 3.6.10. We therefore see that ˜ X also solves the martingale problem for the operator i j α a j − ix α j s − x α i s ∂ ∂ x α i , 3.6.13 and hence is equal in distribution to a solution of the system of differential equa- tions d ˜ X i t = j a j − i ˜X j t − ˜X i tdt. 3.6.14 By the irreducibility of a this implies that lim t →∞ ˜X i t − ˜X j t = 0 a.s. i, j ∈ . 3.6.15 Thus lim t →∞ lim m →∞ E |X i t nm + t − X j t nm + t| 2 = 0 i, j ∈ . 3.6.16 By a diagonal argument we see that there exist T m such that for all s m ≥ T m lim m →∞ E |X i t nm + s m − X j t nm + t m | 2 = 0 i, j ∈ . 3.6.17 In particular, we can find a further subsequence t ˜nm such that t ˜nm − t nm ≥ T m , and therefore lim m →∞ E |X i t ˜nm − X j t ˜nm | 2 = 0 i, j ∈ . 3.6.18 This shows that 3.6.5 holds.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52