Random walk representations Proofs of Theorem 3.1.3 and Lemma 3.1.4

3.3.4 Proof of Theorem 3.1.3

The proof consists of several steps. X ∞ is an invariant law: By this we mean that there exists a shift-invariant solution X ∞ to the martingale problem for the operator A in 3.1.10 such that L X ∞ t = X ∞ ∀t ≥ 0. 3.3.24 To see this, define solutions to the martingale problem for A by X n t : = X t n + t, 3.3.25 where t n is some sequence tending to infinity. By Lemma 3.2.2 we can find a subsequence X nk that converges weakly to some solution X ∞ to the martingale problem for A. Now L X ∞ t = lim n →∞ L X t n + t = L X ∞ ∀t ≥ 0, 3.3.26 where the limit denotes weak convergence of probability measures on K . It is easy to see that X ∞ is shift-invariant. Recurrent a S , P[X i ∞ ∈ ∂ w K ∀i ∈ ] = 1: Let us write CovX ∞ i t, X ∞ j t = C ∞ t j − i 3.3.27 for covariances belonging to the process X ∞ constructed above. We can apply Lemma 3.1.4 to this process. Lemma 3.3.1 now leads to the representation C ∞ t i − j P t j − iC ∞ j = 2 t P s − iE[trwX ∞ t − s]ds. 3.3.28 By the compactness of the state space K , the left-hand side of 3.3.28 is bounded. The right-hand side is equal to 2E[tr wX ∞] t P s − ids. 3.3.29 By the recurrence of the random walk with kernel a S , the integral in 3.3.29 di- verges as t tends to infinity, and therefore 3.3.28 can only hold if E[tr wX ∞] = 0. 3.3.30 This proves that P[X ∞ ∈ ∂ w K ] = 1 and by shift-invariance P[X i ∞ ∈ ∂ w K ∀i ∈ ] = 1. 3.3.31 Recurrent a S , P[X i ∞ = X j ∞ ∀i, j ∈ ] = 1: Applying Lemma 3.1.4 to the process X ∞ , we see that ∂ ∂ t C ∞ t i = j a S j − iC ∞ t j − C ∞ t i + 2δ i 0 E[tr wX ∞ t]. 3.3.32 Here C ∞ t i = C ∞ i , where we use the notation CovX i ∞, X j ∞ = C ∞ j − i. 3.3.33 Note that ∂ ∂ t C ∞ t i = 0, while E[trwX ∞ t] = 0 by 3.3.30. Inserting this into 3.3.32, we get j a S j − iC ∞ j − C ∞ i = 0. 3.3.34 This means that C ∞ is a bounded a S -harmonic function. By the Choquet-Deny theorem which follows easily from Lemma 3.3.3 –see [25], Chapter II, Theorem 1.5 it follows that C ∞ is constant. We write ˜ X i t : = X i t − θ with θ as in Lemma 3.1.4 and note that by Cauchy-Schwarz C ∞ j − i = E[ ˜X i ∞ · ˜X j ∞] ≤ E[| ˜X i ∞| 2 ] 1 2 E[ | ˜X j ∞| 2 ] 1 2 = E[| ˜X ∞| 2 ] = C ∞ 0, 3.3.35 where equality holds if and only if P[X i ∞ = X j ∞] = 1. This proves that P[X i ∞ = X j ∞ ∀i, j ∈ ] = 1. 3.3.36 Transient a S , P[X i ∞ ∈ ∂ w K ] 1 ∀i ∈ : We start by noting that the ergodic- ity of L X 0 implies that for each i ∈ lim t →∞ j P t j − iC j = 0. 3.3.37 To see this, write ˜ X i 0 : = X i − θ as before and note that by Lemma 3.3.2 and 3.3.3 lim t →∞ E j P t j ˜ X j 2 = 0. 3.3.38 Here E j P t j ˜ X j 2 = j k P t j P t kE[ ˜ X j 0 ˜ X k 0] = j k P t j P t kC k − j = i j P t j P t i + jC i = i j P t j P t i − j C i = i P 2t i C i , 3.3.39 where all infinite sums are absolutely convergent and we have used that, by the symmetry of a S , P t i = P t −i. Formula 3.3.38 and 3.3.39 show that 3.3.37 holds for i = 0. Using Lemma 3.3.3 we can easily generalize this to arbitrary i ∈ . By Lemma 3.1.4 and Lemma 3.3.1 we have the representation C t i = j P t j − iC j + 2 t P s − iE[trwX t − s]ds. 3.3.40 Taking the limit t → ∞ we get with the help of 3.3.37 that C ∞ i = lim t →∞ 2 t P s − iE[trwX t − s]ds = 2E[trwX ∞] ∞ P t − idt, 3.3.41 where we use the notation in 3.3.33. Let us assume for the moment that E[tr wX ∞] = 0. Then P[X ∞ ∈ ∂ w K ] = 1. On the other hand, 3.3.41 gives C ∞ = 0 and hence P[X ∞ = θ] = 1. This contradicts our assumption that θ ∈ ∂ w K and we conclude that E[tr wX ∞] 0. Therefore P[X ∞ ∈ ∂ w K ] 1 and the claim follows from shift-invariance. Transient a S , P[X i ∞ = X j ∞] 1 ∀i = j ∈ : Let I t t ≥0 be the random walk with kernel a S . Let τ i be the stopping time τ i : = inf{t ≥ 0 : I t = i} i ∈ . 3.3.42 It is easy to see that for all i ∈ ∞ P t − idt = P i [τ ∞] ∞ P t 0dt. 3.3.43

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52