Generalizations to different state spaces

1. ‘state space’ D ⊂ R d is a bounded open convex set, D is its closure and ∂ D = D\D. 2. ‘fixed shape’ g ∗ : D → R is the unique continuous solution of − 1 2 g ∗ = 1 on D g ∗ = 0 on ∂ D, 2.2.5 with = d i =1 ∂ 2 ∂ x i 2 the Laplacian. 3. ‘diffusion function’ H is the class of functions g : D → [0, ∞ satisfying i g ≤ Mg ∗ for some M ∞ ii g 0 on D iii g continuous on D. 2.2.6 4. ‘attraction point’ θ ∈ D. 5. ‘attraction constant’ c ∈ 0, ∞. With these ingredients we let our basic diffusion equation be the SDE: d X t = cθ − X t dt + 2gX t d B t , 2.2.7 where B t t ≥0 is standard d-dimensional Brownian motion. Solutions of 2.2.7 solve the martingale problem for the operator A with domain D A given by A f x : = cθ − x · ∇ + gx f x D A : = C 2 D, 2.2.8 where ∇ = ∂ ∂ x i , . . . , ∂ ∂ x d and · denotes inner product. The martingale problem for A is well-posed if and only if, for each initial condition on D, the SDE 2.2.7 has a unique weak solution X t t ≥0 . In this case, the operator A has a unique extension to a generator of a Feller semigroup, and X t t ≥0 is the associated Feller process. 4 By a continuous probability kernel on D we mean a continuous map K : D → P D, written x → K x , where P D is the space of probability mea- sures on D, equipped with the topology of weak convergence. We equip the space K D : = C D, P D of probability kernels on D with the topology of uniform convergence. Since P D is compact and Hausdorff, there is a unique uniform structure defining the topology, and we can unambiguously speak about uniform 4 For a discussion of these facts, see the footnote at Theorem 2.1.1. convergence of P D-valued functions. There exists a natural identification be- tween continuous probability kernels K ∈ K D and continuous positive linear operators K : C D → C D satisfying K 1 = 1, the correspondence being given by K f x = D K x d y f y f ∈ C D. 2.2.9 In this identification, the composition of two kernels is given by K L x d y = D K x d yL y d z. 2.2.10 The convergence of operators K n → K in the topology on K D is equivalent to the convergence of the functions K n f → K f , uniformly on D for all f ∈ C D. In order to be able to define our renormalization transformation, we introduce a new class H ′ of diffusion functions as follows: 3 ′ . H ′ is the class of all functions g ∈ H such that for all c ∈ 0, ∞ and θ ∈ D: 1 The martingale problem associated with the operator A in 2.2.8 is well- posed. 2 The diffusion associated with 2.2.7 has a unique equilibrium ν g,c θ . Here, by an equilibrium we mean a stationary distribution of 2.2.7. As we shall see in section 2.2.4, these assumptions are satisfied for many g ∈ H . It turns out that the map θ → ν g,c θ is continuous, and so the equilibrium of 2.2.7 is a continuous probability kernel on D as a function of the parameter θ . Theorem 2.2.1 For each g ∈ H ′ and c ∈ 0, ∞ there exists a continuous proba- bility kernel ν g,c ∈ K D such that, for each θ ∈ D, ν g,c θ is the equilibrium of the diffusion in 2.2.7. For g ∈ H ′ and c ∈ 0, ∞, we now define our ‘renormalization transformation’ as F c gθ : = ν g,c gθ = D gxν g,c θ d x. 2.2.11 In order to speak about the iterates of F c , we need a subclass of H ′ that is closed under the F c ’s. For this we may take the largest such subclass, so we define one more class of diffusion functions: 3 ′′ . H ′′ is the union of all G ⊂ H ′ such that F c G ⊂ G for all c ∈ 0, ∞. With these definitions, we have the following result. Theorem 2.2.2 For all c ∈ 0, ∞: F c H ′ ⊂ H . It is at present not known if H = H ′ , but Theorem 2.2.2 implies at least that if H ′ = H , then H ′′ = H . The next result generalizes Theorem 2.1.7 recall the composition of probabil- ity kernels defined in 2.2.10: Theorem 2.2.3 For g ∈ H ′′ and k ≥ 1, let K g,k be given by K g,k : = ν F k −1 g,c k · · · ν g,c 1 , 2.2.12 where F k g : = F c k ◦ · · · ◦ F c 1 g is the k-th iterate of the renormalization transfor- mations F c applied to g F g = g. If k c −1 k = ∞, then in the sense of uniform convergence of probability kernels: K g,k → K ∞ as k → ∞, 2.2.13 where the limiting kernel K ∞ is universal in g and given by K ∞ θ d x = P[B θ τ ∈ dx], 2.2.14 where B θ t t ≥0 is Brownian motion starting in θ and τ : = inf{t ≥ 0 : B θ t ∈ ∂ D}. The following generalizes Theorem 2.1.9: Theorem 2.2.4 a Let g ∗ be as in 2.2.5. If g ∗ ∈ H ′ , then rg ∗ ∈ H ′′ for all r 0. Moreover, the 1-parameter family of functions rg ∗ r 0 are fixed shapes under F c : F c rg ∗ = c c + r rg ∗ . 2.2.15 b If k c −1 k = ∞, then for all g ∈ H ′′ lim k →∞ σ k F k g = g ∗ uniformly on D, 2.2.16 where σ k : = k l =1 c −1 l . c If, in addition to the assumptions in b, there exists a λ 0 such that g ≥ λg ∗ , then lim k →∞ σ k F k g − g ∗ H = 0, 2.2.17 where the norm · H is given by g H : = sup x ∈D gx g ∗ x . 2.2.18 In d = 1, formula 2.2.17 is in fact known to hold under somewhat weaker condi- tions on g see Theorem 2.1.9 c.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52