Identification of the drift and diffusion rate of ˆ

where R is a constant such that |x − y| ≤ R for all x, y ∈ K and in the last step we use that N ≥ 2 and c 1. Proof of formula 4.1.29: Since the terms with n ≥ 1 in 4.2.2 tend to zero uniformly as i → ∞, it suffices to show that lim i →∞ E T σ k i c k i X N i , k i +1 β i t − ˆX i t − c ∗ [θ − ˆX i t] 2 dt = 0. 4.3.6 Since σ k c k → c ∗ as k → ∞ recall 4.1.15 and 4.1.23, it thus suffices to show that lim i →∞ E T X N i , k i +1 β i t − θ 2 dt = 0. 4.3.7 We use Lemma 4.3.1 to estimate X N i , k i +1 = θ E T X N i , k i +1 β i t − θ 2 dt ≤ T sup ≤s≤β i T E X N i , k i +1 s − θ 2 ≤ M β i T 2 N k i +1 i . 4.3.8 Since T is fixed, the right-hand side tends to zero provided that lim i →∞ β i N k i +1 i = 0. 4.3.9 Inserting β i = σ k i N k i i and σ k i ∼ c −k i c1 − c, we find that this condition amounts to lim i →∞ c k i N i = ∞. 4.3.10 But the latter holds for any c ∈ 0, 1 because of condition 4.1.27.

4.4 Convergence of the diffusion rate

4.4.1 Strategy of the proof

In this section the essential ideas behind Theorem 4.1.3 will have to come in. In particular, we will need to explain how the universal large space-time diffusion function g ∗ arises and why the scaling of time with the factor σ k i N k i is the correct one. Before we embark on the calculations that will give us the convergence in 4.1.30, we outline the heuristics of the proof. STEP 1: We fix a t ≥ 0 and look at the process X N i ξ β i t + s ξ : ξ≤k i −1, s∈[0,T i ] , 4.4.1 with σ k i −1 N k i −1 i ≪ T i ≪ N k i i . 4.4.2 Thus, we consider the evolution of a k i − 1-block on a time scale that is long with respect to σ k i −1 N k i −1 i the presumed time scale of the k i − 1-block average, but short with respect to N k i i . Note that condition 4.4.2 can be met because of condition 4.1.27. The assumption that T i ≪ N k i i allows us to simplify the stochastic differential equations in 4.1.8. First, we can neglect the terms in the summation with k ≥ k i + 1, because they are of order N −k i i and will not be felt on times T i ≪ N k i i . Second, according to Lemma 4.3.1, the block average X N i , k i can be considered as essentially fixed over times T i ≪ N k i i , and hence we expect that the time evolution of the system in 4.4.1 can be approximated by the equations d X N i ξ β i t + s = c N i k i −1 X N i , k i ξ β i t − X N i ξ β i t + s ds + k i −1 k =1 c N i k −1 X N i , k ξ β i t + s − X N i ξ β i t + s ds + 2gX N i ξ β i t + sd B i ξ β i t + s s ≥ 0, ξ ≤ k i − 1. 4.4.3 Next comes the essential point in the argument. We expect that the condition σ k i −1 N k i −1 i ≪ T i is sufficient to guarantee that solutions of 4.4.3 reach equi- librium on the time scale T i , conditional to the k i -block average X N i , k i ξ β i t. The system in 4.1.5 as a whole does not have a true equilibrium distribution; instead, it was shown in Swart [41] that the distribution of the system tends to a mixture of trivial extremal measures as t → ∞. However, as was recognized by Dawson and Greven in [10], the system in 4.1.5 goes through a series of ‘local equilibria’ as time tends to infinity, where k i -blocks of ever larger size reach a temporary and approximate ‘local’ equilibrium at times of the appropriate order of magnitude. It is from the properties of these local equilibria that our result will follow. STEP 2: Let us condition the system on X N i , k i β i t = ˆθ, 4.4.4 and assume that the system in 4.4.1, conditioned on 4.4.4, is in equilibrium. For ξ ≤ k i − 1 and η ≤ k i , we define the covariance function C s ξ − η := Cov X N i ξ β i t + s, X N i η β i t + s , 4.4.5 where the covariance of two K -valued random variables X and Y is defined as CovX, Y : = E[X · Y ] − E[X] · E[Y ] 4.4.6 with x · y := α x α y α the usual inner product on R d . A covariance calculation as in Swart [41] gives that for ξ ≤ k i ∂ ∂ s C s ξ = η a k i −1 N i η − ξ[C s η − C s ξ ] +2dδ 0,ξ E[gX N i β i t + s] − 2 c N i k i C s ξ , 4.4.7 where a k N is the k-block interaction kernel a k N ξ : = k l =ξ 1 N l c N l −1 . 4.4.8 Using our assumption about local equilibrium, we set ∂ ∂ s C s ξ = 0 in 4.4.7 and we assume that E[gX N i ξ β i t +s] does not depend on s. Now we can solve C s ξ in terms of E[gX N i ξ β i t + s] and a random walk on i : = {ξ ∈ N i : ξ ≤ k i − 1} 4.4.9 that jumps from site ξ to site η with rate a k i −1 N i η − ξ and that is killed in each site with rate c N i k i . Indeed, denoting by P i t η − ξ the probability that this random walk moves from site ξ to site η in time t, we have the representation C s ξ = d E[gX N i β i t + s] ∞ P i t ξ dt. 4.4.10 Note that with probability one the random walk is eventually killed, so that the integral on the right-hand side is finite. Picking ξ = 0, we get VarX N i β i t + s = dµ i E[gX N i β i t + s] 4.4.11 with µ i : = ∞ P i t 0dt 4.4.12 the expected time the random walk starting in 0 spends at the origin. STEP 3: It turns out that we can also express the expectation of any harmonic function of X N i ξ β i t + s in terms of the above random walk. Indeed, we have the representation see Swart [41], Lemma 3.1.6 in this dissertation E[ f X N i β i t + s] = E f ˆθ + ξ P i s ξ [X N i ξ β i t − ˆθ] 4.4.13

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52