Renormalization theory Overview of the three articles

we expect X N to solve the martingale problem for an operator of the form A f x : = i j a j − i α x α j − x α i ∂ ∂ x α i f x + i αβ w αβ x i ∂ 2 ∂ x α i ∂ x β i f x, 1.2.5 with domain the C 2 -functions f that depend on finitely many x α i only. Here the dif- fusion matrix w can be the p-type q-tuple diffusion matrix w p,q , originating from a q-tuple resampling mechanism, but we also allow for more general w, originating from a composition-dependent resampling mechanism. We choose the migration kernel a in such a way that the strength of the migra- tion between two urns depends only on their hierarchical distance. The collection of all urns at hierarchical distance at most k from an urn i { j ∈ N : j − i ≤ k} 1.2.6 we call the k-block around i . We fix constants c 1 , c 2 , . . . ∈ 0, ∞ and for all k = 1, 2, . . . we let the balls in our urns be subject to the following migration mechanism: With rate c k N k −1 each ball in an urn i chooses a random urn in the k-block around i possibly itself and migrates to that urn. This means that the migration kernel a is given by ai = ∞ k =i c k N 2k −1 . 1.2.7 To understand why 1.2.7 is the correct formula, note that a ball in urn i decides with rate c k N k −1 to jump to another urn in the k-block around i . If k ≥ i, this urn is with probability N −k the origin. The process X N can be represented, on an appropriately chosen probability space equipped with p −1-dimensional independent Brownian motions B i i ∈ N , as a solution to the following system of stochastic differential equations: d X N,α i t = ∞ k =1 c k N k −1 X N,k,α i t − X N,α i t dt + β σ αβ X N i td B β i t i ∈ N , α = 1, . . . , d, t ≥ 0, 1.2.8 where 1 2 γ σ αγ xσ βγ x = w αβ x 1.2.9 and X N,k i t is the k-block average around i : X N,k,α i t : = N −k j : j−i≤k X N,α i t. 1.2.10 It is clear that the hierarchical group with its structure of blocks made out of smaller blocks is ideally suited for renormalization theory. For certain 2-type mod- els it has been shown that the system in 1.2.8 admits a rigorous description in terms of a renormalization transformation, in the limit where the dimension N of the hierarchical group tends to infinity. Since we expect this result to hold more generally, we formulate it here as a non-rigorous conjecture. For c ∈ 0, ∞, x ∈ ˆ K p and for any diffusion matrix w on ˆ K p , let us write A w, c x for the operator A w, c x f y : = α cx α − y α ∂ ∂ y α f y + αβ w αβ y ∂ 2 ∂ y α ∂ y β f y. 1.2.11 We expect that for ‘reasonable’ w this is one point where we are non-rigorous the martingale problem for A w, c x is well-posed and the associated diffusion process has a unique equilibrium and is ergodic. By Z w, c x we denote the solution to the martingale problem for A w, c x with initial condition Z w, c x = x, and by ν w, c x d y we denote the equilibrium distribution associated with A w, c x . For each c ∈ 0, ∞ we define a renormalization transformation F c , acting on diffusion matrices w we are vague as to the precise domain of F c by the formula F c w αβ x : = ˆ K p w αβ yν w, c x d y. 1.2.12 Conjecture 1.2.1 Assume that X N solves 1.2.8 with initial condition X i = θ for all i ∈ N . Then for each k ≥ 0 X N,k N k t t ≥0 ⇒ Z F k w, c k +1 θ t t ≥0 as N → ∞, 1.2.13 where F k w is the k-th iterate of renormalization transformations F c applied to w : F k w : = F c k ◦ · · · ◦ F c 1 w. 1.2.14 Furthermore, for any t 0 X N,k N k t, . . . , X N,0 N k t ⇒ Z k , . . . , Z as N → ∞, 1.2.15 where Z k , . . . , Z is a Markov chain in this order with transition probabilities P[Z n −1 ∈ dy|Z n = x] = ν F n −1 w, c n x d y n = 1, . . . , k. 1.2.16 Note that in order to get a non-trivial limit in 1.2.13, we need to rescale space and time. While we rescale space by going to k-block variables, we rescale time by a factor N k . In the limit N → ∞ the block averages of differently sized blocks

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52