Covariance calculations: Lemma 3.1.4 Introduction and main results

Theorem 3.1.5 Let X be a shift-invariant solution to 3.1.2 such that L X 0 is spatially ergodic and E[X i 0] = θ i ∈ 3.1.47 for some θ ∈ K . Assume that weak uniqueness holds for the non-interacting equation 3.1.19, that the associated boundary distribution is stable against a linear drift, that S ∞ C K ⊂ C K and that H is contained in the bp-closure of C 2 K ∩ H . If the random walk with kernel a S is recurrent, then there exists a K -valued random variable X ∞ such that X t ⇒ X ∞ as t → ∞, 3.1.48 where L X i ∞ = Ŵ θ i ∈ . 3.1.49 The bp-closure of a set is the smallest set containing it that is closed under bounded pointwise limits. Note that by Theorem 3.1.3, P[X i ∞ = X j ∞ ∀i, j ∈ ] = 1. Thus, the fact that the boundary distribution is stable against a linear drift not only allows us to conclude that X t converges to a limit X ∞, it also allows us to completely specify its distribution. This distribution turns out to be universal in all recurrent random walk kernels a S and Abelian groups , and in all diffusion matrices w sharing the same boundary distribution Ŵ x x ∈K .

3.1.8 Harmonic functions: Lemma 3.1.6

To see what goes into proving Theorem 3.1.5, we mention the following: Lemma 3.1.6 Let X be a solution to 3.1.2. Assume that weak uniqueness holds for the non-interacting equation 3.1.19, that the associated boundary distribution is stable against a linear drift, that S ∞ C K ⊂ C K and that H is contained in the bp-closure of C 2 K ∩ H . Then E[ f X i t] = E f j P t j −iX j ∀ f ∈ H, i ∈ , t ≥ 0, 3.1.50 where P t j − i is the probability that the random walk with kernel a starting from i , is in j at time t. The situation is particularly simple when X i = θ for all i ∈ . In that case E[ f X i t] = f θ ∀ f ∈ H, i ∈ , t ≥ 0. 3.1.51 For a 2-type model with diffusion matrix w as in 3.1.16, the class H contains only affine functions x → a + bx a, b ∈ R , and 3.1.51 says no more than that the mean of the components is conserved. Since there is only one distribution on {0, 1} with a given mean, it is then immediately clear for recurrent a S that there is only one possible long-time distribution for the process in 3.1.2. In the general higher-dimensional case, we need to specify a distribution on the effective boundary ∂ w K , and for this we need the expectation of sufficiently many harmonic functions. We may describe 3.1.51 by saying that the ‘w-harmonic mean’ of the components is conserved.

3.1.9 Special models: Corollary 3.1.7

The proof of Theorem 3.1.5 uses a comparison argument, in the spirit of the ‘du- ality comparison argument’ in [6]. In our comparison argument we use objects related to the special diffusion matrix w ∗ αβ x : = K Ŵ x d yy α −x α y β −x β x ∈ K , α, β = 1, . . . , d. 3.1.52 We do not have a duality for the model with w ∗ , but we can find an expression for second moments, which is enough for our purposes. For the special model with w = λw ∗ λ 0 the proof of Theorem 3.1.5 yields the following corollary. Corollary 3.1.7 In addition to the assumptions in Theorem 3.1.5, assume that for some λ ∈ 0, ∞ w x = λw ∗ x x ∈ K . 3.1.53 Then for each t ≥ 0, i, j ∈ , α, β = 1, . . . , d E[X α i t − θ α X β j t − θ β ] = w ∗ αβ θ K λ t i, j , 3.1.54 where K λ t i, j denotes the probability that two delayed coalescing random walks, each with kernel a, starting in points i and j respectively, and coalescing with rate 2λ, have coalesced before time t.

3.1.10 Examples

We close this introduction by giving two examples of classes of diffusion matrices w satisfying the assumptions in Theorem 3.1.5. The first example arises when we generalize the 2-type models mentioned in 3.1.16 to p-type models in the following way.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52