Proof of Theorem 3.1.3 Proofs of Theorem 3.1.3 and Lemma 3.1.4

Let us assume that for some i = 0 we have P i [τ ∞] = 1. Then by the symmetry of the random walk, also P [τ i ∞] = 1. But this implies that the random walk starting in 0 visits 0 infinitely often, which contradicts our assumption that it is transient. It follows that P i [τ j ∞] 1 for all i = j. Combining 3.3.43 and 3.3.41 we can conclude that C ∞ i C ∞ ∀i = 0. 3.3.44 Now Cauchy-Schwarz in 3.3.35 implies that P[X i ∞ = X j ∞] 1 for all i = j.

3.4 Proofs of Theorem 3.1.5, Lemma 3.1.6

and Corollary 3.1.7

3.4.1 Potential theory

In this section we collect some elementary facts about w-harmonic functions from potential theory. We assume that for each x ∈ K , the non-interacting equation 3.1.19 has a unique weak solution X x with initial condition X x = x. We denote its last element by X x ∞. We denote the semigroup on BK associated with 3.1.19 by S t t ≥0 and we add a last element S ∞ as in 3.1.41. Restricted to the smaller domain C K ⊂ BK , the S t t ≥0 form a Feller semigroup, whose generator we denote by G. Note that D G ⊂ C K . Lemma 3.4.1 For each solution X to 3.1.19 P[X ∞ ∈ ∂ w K ] = 1. 3.4.1 Proof of Lemma 3.4.1: Since X is a bounded martingale, it converges. Now the lemma is just a special case of Theorem 3.1.3. Lemma 3.4.2 Assume that S ∞ C K ⊂ C K . Consider sets H, H ′ , H ′′ , H ′′′ defined as H : = { f ∈ D G : G f = 0} H ′ : = { f ∈ C K : S t f = f ∀t ∈ [0, ∞]} H ′′ : = { f ∈ C K : S ∞ f = f } H ′′′ : = {S ∞ φ : φ ∈ C K } 3.4.2 Then H = H ′ = H ′′ = H ′′′ . For each φ ∈ C K there exists a unique f ∈ H such that f x = φx x ∈ ∂ w K 3.4.3 and this f is given by f = S ∞ φ. 3.4.4 Proof of Lemma 3.4.2: It is easy to see that H ⊂ H ′ ⊂ H ′′ ⊂ H ′′′ . To see that H ′′′ ⊂ H , note that φX t → φX ∞ almost surely, so bounded con- vergence implies that E x [φX t] → E x [φX ∞] for each x ∈ K . Since |E x [φX t] | ≤ φ ∞ ∞, it follows that S t φ → S ∞ φ as t → ∞ in the sense of bounded pointwise convergence. Therefore S t S ∞ φ x = lim s →∞ S t S s φ x = S ∞ φ x x ∈ K . 3.4.5 It follows that t −1 S t − 1S ∞ φ = 0 for all t, so lim t →0 t −1 S t − 1S ∞ φ = 0 3.4.6 in the topology on C K and this proves that H ′′′ ⊂ H . By 3.4.2, S ∞ φ ∈ H for each φ ∈ C K . To see that f : = S ∞ φ solves 3.4.3 it suffices to note that for each x ∈ ∂ w K the process X t : = x 3.4.7 solves 3.1.19. To see that f is the unique w-harmonic function satisfying 3.4.3, suppose that ˜ f ∈ H is another one. Then by 3.4.2 and by Lemma 3.4.1 ˜f = S ∞ ˜f = S ∞ φ = f. 3.4.8 In the proof of Theorem 3.1.5 we will make use of the function v ∗ , given by v ∗ x = trw ∗ , 3.4.9 where w ∗ is the special diffusion matrix mentioned in 3.1.52. The following lemma collects some elementary facts about v ∗ . Lemma 3.4.3 Assume that S ∞ C K ⊂ C K . Then there exists a unique func- tion v ∗ ∈ D G such that − 1 2 Gv ∗ x = trwx x ∈ K v ∗ x = 0 x ∈ ∂ w K . 3.4.10 This function v ∗ satisfies v ∗ x ≥ 0 x ∈ K v ∗ x = 0 ⇔ x ∈ ∂ w K , 3.4.11 and is given by the formula v ∗ x = VarX x ∞. 3.4.12 Proof of Lemma 3.4.3: We write x 2 for the function x → |x| 2 . Then G x 2 = 2trw. 3.4.13 Thus, 3.4.10 can be rewritten as Gv ∗ + x 2 = 0 on K v ∗ + x 2 = x 2 on ∂ w K . 3.4.14 Lemma 3.4.2 shows that v ∗ + x 2 can be uniquely solved from these equations. Using the fact that X x solves the martingale problem for G we see with the help of 3.4.10 and 3.4.13 that E X x ∞ − x 2 = 2 ∞ E[tr wX t]dt = −E[v ∗ X x ∞] + v ∗ x. 3.4.15 Lemma 3.4.1 implies that E[v ∗ X x ∞] = 0 and so we see that 3.4.12 holds. Formula 3.4.12 immediately implies that v ∗ x ≥ 0. Finally v ∗ x = 0 implies VarX x ∞ = 0 so that X x ∞ = x, and by Lemma 3.4.1 this in turn implies that x ∈ ∂ w K .

3.4.2 Infinite-dimensional differentiation

We will need to extend the domain of the operator A in 3.1.10 to include functions depending on infinitely many coordinates. In order to do this properly, we intro- duce the space C 2 sum K of functions with summable continuous second deriva- tives. For a function f : R d → R we define ∂ ∂ x α i f x in the usual way. C 2 R d is the class of functions for which all zeroth, first and second order derivatives are continuous functions on R d . C 2 K is the set of funtions on K that can be extended to functions in C 2 R d . C 2 sum K , finally, is the space of functions in C 2 K for which x → ∂ ∂ x α i f x α =1,...,d i ∈ x → ∂ 2 ∂ x α i ∂ x β j f x α,β =1,...,d i, j ∈ 3.4.16 are continuous maps from K into l 1 {1, . . . , d} × and l 1 {1, . . . , d} 2 × 2 , respectively, spaces of absolutely summable sequences, equipped with the l 1 -norm. Lemma 3.4.4 For i, j ∈ and α, β = 1, . . . , d, let b i,α and a i j,αβ be functions in C K satisfying uniform bounds b i,α ∞ ≤ M 1 ∀i ∈ , α = 1, . . . , d a i j,αβ ∞ ≤ M 2 ∀i, j ∈ , α, β = 1, . . . , d. 3.4.17 Then for each f ∈ C 2 sum K and for all finite n ⊂ with n ↑ , the limit lim n →∞ i ∈ n , α b i,α x ∂ ∂ x α i + i j ∈ n , αβ a i j,αβ x ∂ 2 ∂ x α i ∂ x β j f x 3.4.18 exists in the topology on C K and does not depend on the choice of the n . Proof of Lemma 3.4.4: We treat only the convergence of the first order derivatives; the argument for second order derivatives is then the same. Define operators A n by A n f x : = i ∈ n ,α b i,α x ∂ ∂ x α i f x. 3.4.19 For each n ≤ m and for each f ∈ C 2 sum K we have A n f − A m f ∞ = sup x ∈K i ∈ m \ n , α b i,α x ∂ ∂ x α i f x ≤ M 1 sup x ∈K i ∈\ n , α ∂ ∂ x α i f x . 3.4.20 The functions g n : K → l 1 {1, . . . , d} × given by g n x : = i ∈\ n , α ∂ ∂ x α i f x 3.4.21 are continuous functions decreasing to zero as n → ∞, and hence by Dini’s the- orem g n → 0 uniformly. Thus we see by 3.4.20 that the sequence A n f is a Cauchy sequence in the Banach space C K . To see that the limit does not depend on the summation order, observe that for each x ∈ K i,α b i,α x ∂ ∂ x α i f x ≤ M 1 i,α ∂ ∂ x α i f x ∞. 3.4.22 This means that we can write lim n →∞ A n f x = i,α b i,α x ∂ ∂ x α i f x, 3.4.23

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52