Infinite-dimensional differentiation Proofs of Theorem 3.1.5, Lemma 3.1.6

By the compactness of K , the maps x → ∂ ∂ x α i f x α =1,...,d i ∈ x → ∂ 2 ∂ x α i ∂ x β j f x α,β =1,...,d i, j ∈ 3.4.29 are uniformly continous with respect to the norm on the spaces l 1 {1, . . . , d} × and l 1 {1, . . . , d} 2 × 2 . This implies that lim n →∞ sup x ∈K i,α ∂ ∂ x α i f π n x − ∂ ∂ x α i f x = 0, 3.4.30 and similarly for second derivatives. Finally, by Dini’s theorem see 3.4.21 lim n →∞ sup x ∈K i n,α ∂ ∂ x α i f x = 0, 3.4.31 and similarly for second derivatives, so A f n → A ′ f .

3.4.3 Proof of Lemma 3.1.6

The model with zero diffusion: In the special case where w = 0, the system of stochastic differential equations 3.1.2 reduces to d X i t = j ∈ a j − iX j t − X i tdt i ∈ , t ≥ 0. 3.4.32 By Theorems 3.1.1 and 3.1.2 this system of equations has a unique solution. We can write down the solution of 3.4.32 explicitly in terms of the random walk on that jumps from i to j with rate a j − i. Let P t j − i denote the probability that this random walk, starting in i at time 0, is in j at time t. Then the unique solution of 3.4.32 is given by see Lemma 3.3.1 X i t = j P t j − iX j 0. 3.4.33 Let P t t ≥0 be the semigroup on B associated with the random walk with kernel a see section 3.3.2. Let us denote by R t t ≥0 the Feller semigroup on C K associated with the process in 3.4.32: R t f x : = E[ f X x t] = f P t x. 3.4.34 Applying Lemma 3.4.5 to the case w = 0, we see that the generator of R t t ≥0 is an extension of the operator B f x : = i,α j a j − ix j − x i ∂ ∂ x α i f x 3.4.35 with domain D B : = C 2 sum K . Evolution of harmonic functions: We now set out to prove Lemma 3.1.6. We start with the case f ∈ C 2 K ∩ H . Fix i ∈ , and let h ∈ C 2 fin K be given by hx : = f x i . 3.4.36 In the language above, we want to show that E[hX t] = E[R t hX 0]. 3.4.37 It is not hard to see that R t h ∈ C 2 sum K for each t ≥ 0, where by 3.4.34 ∂ ∂ x α k R t hx = P t k − i ∂ ∂ x α f j P t j − ix j ∂ 2 ∂ x α k ∂ x β l R t hx = P t k − iP t l − i ∂ 2 ∂ x α ∂ x β f j P t j − ix j . 3.4.38 General theory see [16], chapter 1 now tells us that t → R t h is continuously differentiable in C K and ∂ ∂ t R t h = B R t h, 3.4.39 with B the operator in 3.4.35. By Lemma 3.4.5, X solves the martingale problem for the operator A ′ : = B + C, 3.4.40 where C f x : = i,αβ w αβ x i ∂ 2 ∂ x α i ∂ x β i f x 3.4.41 and D A ′ = C 2 sum K . It follows that E[R hX T ] − E[R T hX 0] = E T B + C + ∂ ∂ t R T −t hX tdt = E T C R T −t hX tdt. 3.4.42 By 3.4.38 we have, for any x ∈ K C R T −t hx = j P T −t j − i 2 αβ w αβ x j ∂ 2 ∂ x α ∂ x β f j P t j − ix j . 3.4.43 Using Lemma 3.4.2 it is not hard to see that the stability of the boundary distribu- tion against a linear drift is equivalent to formula 3.1.46. The semigroup T θ, t t ≥0 maps differentiable functions into differentiable functions, and hence T θ, t C 2 K ∩ H ⊂ C 2 K ∩ H ∀θ ∈ K , t ≥ 0. 3.4.44 This means that GT θ, t f = 0 for all f ∈ C 2 K ∩ H and θ ∈ K , t ≥ 0, which says that for any x ∈ K αβ w αβ x ∂ 2 ∂ x α ∂ x β f θ + x − θe −t = e −2t αβ w αβ x ∂ 2 ∂ x α ∂ x β f e −t x + 1 − e −t θ = 0 ∀ f ∈ C 2 K ∩ H, θ ∈ K , t ≥ 0. 3.4.45 For the x here we insert the x i in 3.4.43 and we fit θ and t such that e −t = P t and 1 − e −t θ = j =i P t j − ix j . Inserting this into 3.4.43 we see that each term in the sum over j there is zero, and therefore 3.4.42 gives E[ f X i T ] = E f j P T j − iX j . 3.4.46 To generalize this to arbitrary f ∈ H it suffices to note that the set of functions f ∈ BK for which 3.4.46 holds is bp-closed.

3.4.4 Proof of Theorem 3.1.5

Comparison argument: The function x → trwx is continuous, takes only non-negative values, and satisfies tr wx = 0 ⇔ x ∈ ∂ w K . 3.4.47 The same is true for the function x → v ∗ x see Lemma 3.4.3 and therefore for each ε 0 we can find a λ 0 such that tr wx ≥ λv ∗ x − ε x ∈ K . 3.4.48 When we insert this inequality into formula 3.1.34 in Lemma 3.1.4 we see that for all i ∈ , t ≥ 0 ∂ ∂ t C t i ≥ j a S j − iC t j − C t i + 2λδ i 0 E[v ∗ X t] − ε. 3.4.49 We apply Lemma 3.4.3 to see that the function x → v ∗ x + |x − θ| 2 3.4.50 is w-harmonic. Lemma 3.1.6 therefore tells us that for all t ≥ 0 E[v ∗ X t] + VarX t = E v ∗ j P t j X j + Var j P t j X j . 3.4.51 By Lemma 3.3.3, Lemma 3.3.2 and the spatial ergodicity of L X 0 this implies that lim t →∞ E[v ∗ X t] + C t = v ∗ θ . 3.4.52 Combining this with 3.4.49 we see there exists a T such that for all t ≥ T ∂ ∂ t C t i ≥ j a S j − iC t j − C t i + 2λδ i 0 v ∗ θ − C t − 2ε. 3.4.53 Random walk representation: Let us define D t i : = v ∗ θ − C t i − 2ε i ∈ , t ≥ 0. 3.4.54 Then 3.4.53 can be rewritten as ∂ ∂ t D t i ≤ j a S j − iD t j − D t i − 2λδ i 0 D t t ≥ T . 3.4.55 We note that since t → C t is continuously differentiable in B, so is t → D t . Arguing as in the proof of Lemma 3.3.1, we can represent solutions of the differen- tial inequality 3.4.55 in terms of a contracting semigroup P λ t t ≥0 on B, with generator G f i : = j a S j − i f j − f i − 2λδ i 0 f 0 f ∈ B. 3.4.56 This semigroup is related to a random walk on that jumps from i to j with rate a S j − i and that is killed at the origin with rate 2λ. When P λ t j, i denotes the probability that this random walk, starting from a point i , is in j at time t, then P λ t f i = j P λ t j, i f j f ∈ B, 3.4.57 and for solutions of 3.4.55 we have the representation D T +t i ≤ j P λ t j, i D T j t ≥ 0. 3.4.58

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52