Spatially ergodic measures Proofs of Theorem 3.1.3 and Lemma 3.1.4

Here E j P t j ˜ X j 2 = j k P t j P t kE[ ˜ X j 0 ˜ X k 0] = j k P t j P t kC k − j = i j P t j P t i + jC i = i j P t j P t i − j C i = i P 2t i C i , 3.3.39 where all infinite sums are absolutely convergent and we have used that, by the symmetry of a S , P t i = P t −i. Formula 3.3.38 and 3.3.39 show that 3.3.37 holds for i = 0. Using Lemma 3.3.3 we can easily generalize this to arbitrary i ∈ . By Lemma 3.1.4 and Lemma 3.3.1 we have the representation C t i = j P t j − iC j + 2 t P s − iE[trwX t − s]ds. 3.3.40 Taking the limit t → ∞ we get with the help of 3.3.37 that C ∞ i = lim t →∞ 2 t P s − iE[trwX t − s]ds = 2E[trwX ∞] ∞ P t − idt, 3.3.41 where we use the notation in 3.3.33. Let us assume for the moment that E[tr wX ∞] = 0. Then P[X ∞ ∈ ∂ w K ] = 1. On the other hand, 3.3.41 gives C ∞ = 0 and hence P[X ∞ = θ] = 1. This contradicts our assumption that θ ∈ ∂ w K and we conclude that E[tr wX ∞] 0. Therefore P[X ∞ ∈ ∂ w K ] 1 and the claim follows from shift-invariance. Transient a S , P[X i ∞ = X j ∞] 1 ∀i = j ∈ : Let I t t ≥0 be the random walk with kernel a S . Let τ i be the stopping time τ i : = inf{t ≥ 0 : I t = i} i ∈ . 3.3.42 It is easy to see that for all i ∈ ∞ P t − idt = P i [τ ∞] ∞ P t 0dt. 3.3.43 Let us assume that for some i = 0 we have P i [τ ∞] = 1. Then by the symmetry of the random walk, also P [τ i ∞] = 1. But this implies that the random walk starting in 0 visits 0 infinitely often, which contradicts our assumption that it is transient. It follows that P i [τ j ∞] 1 for all i = j. Combining 3.3.43 and 3.3.41 we can conclude that C ∞ i C ∞ ∀i = 0. 3.3.44 Now Cauchy-Schwarz in 3.3.35 implies that P[X i ∞ = X j ∞] 1 for all i = j.

3.4 Proofs of Theorem 3.1.5, Lemma 3.1.6

and Corollary 3.1.7

3.4.1 Potential theory

In this section we collect some elementary facts about w-harmonic functions from potential theory. We assume that for each x ∈ K , the non-interacting equation 3.1.19 has a unique weak solution X x with initial condition X x = x. We denote its last element by X x ∞. We denote the semigroup on BK associated with 3.1.19 by S t t ≥0 and we add a last element S ∞ as in 3.1.41. Restricted to the smaller domain C K ⊂ BK , the S t t ≥0 form a Feller semigroup, whose generator we denote by G. Note that D G ⊂ C K . Lemma 3.4.1 For each solution X to 3.1.19 P[X ∞ ∈ ∂ w K ] = 1. 3.4.1 Proof of Lemma 3.4.1: Since X is a bounded martingale, it converges. Now the lemma is just a special case of Theorem 3.1.3.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52