Proof of Lemma 3.1.6 Proofs of Theorem 3.1.5, Lemma 3.1.6

We apply Lemma 3.4.3 to see that the function x → v ∗ x + |x − θ| 2 3.4.50 is w-harmonic. Lemma 3.1.6 therefore tells us that for all t ≥ 0 E[v ∗ X t] + VarX t = E v ∗ j P t j X j + Var j P t j X j . 3.4.51 By Lemma 3.3.3, Lemma 3.3.2 and the spatial ergodicity of L X 0 this implies that lim t →∞ E[v ∗ X t] + C t = v ∗ θ . 3.4.52 Combining this with 3.4.49 we see there exists a T such that for all t ≥ T ∂ ∂ t C t i ≥ j a S j − iC t j − C t i + 2λδ i 0 v ∗ θ − C t − 2ε. 3.4.53 Random walk representation: Let us define D t i : = v ∗ θ − C t i − 2ε i ∈ , t ≥ 0. 3.4.54 Then 3.4.53 can be rewritten as ∂ ∂ t D t i ≤ j a S j − iD t j − D t i − 2λδ i 0 D t t ≥ T . 3.4.55 We note that since t → C t is continuously differentiable in B, so is t → D t . Arguing as in the proof of Lemma 3.3.1, we can represent solutions of the differen- tial inequality 3.4.55 in terms of a contracting semigroup P λ t t ≥0 on B, with generator G f i : = j a S j − i f j − f i − 2λδ i 0 f 0 f ∈ B. 3.4.56 This semigroup is related to a random walk on that jumps from i to j with rate a S j − i and that is killed at the origin with rate 2λ. When P λ t j, i denotes the probability that this random walk, starting from a point i , is in j at time t, then P λ t f i = j P λ t j, i f j f ∈ B, 3.4.57 and for solutions of 3.4.55 we have the representation D T +t i ≤ j P λ t j, i D T j t ≥ 0. 3.4.58 Convergence of the covariance function: If a S is recurrent, then the random walk is killed with probability one. This means that for each i ∈ lim t →∞ j P λ t j, i = 0. 3.4.59 Combining this with 3.4.58 and using the boundedness of K we see that for each i ∈ there exists a T ′ such that for all t ≥ T ′ C t i ≥ v ∗ θ − 3ε. 3.4.60 We have thus shown that for every i ∈ lim inf t →∞ C t i ≥ v ∗ θ . 3.4.61 On the other hand, with the help of formula 3.4.52 it is easy to see that lim sup t →∞ C t ≤ v ∗ θ . 3.4.62 By Cauchy-Schwarz we have C t i ≤ C t 0 for all i ∈ compare 3.3.35, and hence lim t →∞ C t i = v ∗ θ ∀i ∈ . 3.4.63 Convergence of X t: Let S t t ≥0 be the semigroup in 3.1.40. Pick any function φ ∈ C K . By Lemma 3.4.2 φ x − S ∞ φ x = 0 x ∈ ∂ w K . 3.4.64 Formulas 3.4.52 and 3.4.63 imply that lim t →∞ E[v ∗ X t] = 0. 3.4.65 Since v ∗ is continuous, non-negative, and zero only at ∂ w K see Lemma 3.4.3 formulas 3.4.64 and 3.4.65 imply that lim t →∞ E[φX t] − E[S ∞ φ X t] = 0. 3.4.66 Now S ∞ φ ∈ H Lemma 3.4.2 and therefore Lemmas 3.1.6, 3.3.2 and 3.3.3 imply that lim t →∞ E[S ∞ φ X t] = S ∞ φθ = K Ŵ θ d xφx. 3.4.67 Thus we see that X t ⇒ X ∞ as t → ∞, 3.4.68 where the law of X ∞ is given by L X ∞ = Ŵ θ . 3.4.69 Convergence of X t: Formula 3.4.61 and Cauchy-Schwarz imply that for all i, j ∈ lim t →∞ E |X i t − X j t | 2 = 0. 3.4.70 Combining this with 3.4.68 we easily see that for each finite ⊂ the collection X i t i ∈ converges weakly to a limit X i ∞ i ∈ . By the fact that continuous functions depending on finitely many coordinates only are dense in C K see the proof of Lemma 3.2.1 this implies weak convergence of X t.

3.4.5 Proof of Corollary 3.1.7

Under the condition w = λw ∗ , most inequalities in the proof of Theorem 3.1.5 can be replaced by equalities. In fact, under the weaker condition recall that v ∗ = tr w ∗ tr w = λv ∗ , 3.4.71 we have equality in 3.4.48 with ε = 0. Since we are working with the initial condition X i = θ for all i ∈ , formula 3.4.52 strengthens to E[v ∗ X t] + C t = v ∗ θ t ≥ 0. 3.4.72 Formula 3.4.58 with T = 0 = ε and an equality sign reads v ∗ θ − C t i = j P λ t j, i v ∗ θ − C j , 3.4.73 where C j = 0 for all j. In this way we find that C t i = v ∗ θ 1 − j P λ t j, i . 3.4.74 Here 1 − j P λ t j, i is the same as the probability K λ t i appearing in 3.1.54. One can derive formula 3.1.54 in a similar way as formula 3.4.74. For that, one needs to replace the covariance function C t i by a covariance matrix function C t j − i αβ : = E[X α i t − θ α X β j t − θ β ]. 3.4.75 Generalizing Lemma 3.4.3 one then finds that, for each α, β, the function x → w ∗ αβ x 3.4.76

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52