Proof of Theorem 3.1.2 Proofs of Theorems 3.1.1 and 3.1.2

Let us put ˜ X i : = X i − θ. Applying 3.3.2 to the function f x = α x α i − θ α x α j − θ α , using bounded convergence to interchange an infinite sum and ex- pectation, we get ∂ ∂ t CovX i t, X j t = k,l ak − lE α ˜ X α k t − ˜X α l tδ il ˜X α j t + δ jl ˜X α i t +2δ i j E[tr wX t]. 3.3.6 Inserting 3.3.4 we get ∂ ∂ t C t j − i = k ak − iC t j − k − C t j − i + k ak − jC t k − i − C t j − i +2δ i j E[tr wX t]. 3.3.7 Substituting ˜ı := j − i, ˜ := k − i and ˜k := j − k and reordering the summations, we find that ∂ ∂ t C t ˜ı = ˜ a ˜C t ˜ı − ˜ − C t ˜ı + ˜k a − ˜kC t ˜ı − ˜k − C t ˜ı +2δ ˜ı0 E[tr wX t]. 3.3.8 This shows that formula 3.1.34 holds.

3.3.2 Random walk representations

Let B be the Banach space of bounded real functions on , equipped with the supremum norm. The operator G in 3.1.35 is a bounded linear operator on B. We define a Feller semigroup on B by P t f : = e t G f, 3.3.9 where e t G : = ∞ n =0 1 n t G n . This semigroup corresponds to a continuous-time random walk I t t ≥0 on that jumps from i to j with rate a S j − i. By shift- invariance there exists a function P : [0, ∞ × → R such that P t j − i = P i [I t = j]. 3.3.10 We can consider P t j − i as the i, j-th element of the matrix of the operator P t in 3.3.9, in the following sense P t f i = j P t j − i f j. 3.3.11 Lemma 3.3.1 Assume that f, g : [0, ∞ → B are continuous functions, where t → f t i is continuously differentiable for each i ∈ and ∂ ∂ t f t i = j a S j − i f t j − f t i + g t i t ≥ 0, i ∈ . 3.3.12 Then f t i = j P t j − i f j + t j P s j − ig t −s j ds t ≥ 0, i ∈ . 3.3.13 Proof of Lemma 3.3.1: We define derivatives and Riemann integrals of B- valued functions as in [16], chapter 1. In that language, we would like to rewrite 3.3.12 as ∂ ∂ t f t = G f t + g t t ≥ 0. 3.3.14 However, care is needed because it is not immediately clear that the derivative ∂ ∂ t f t : = lim ε →0 ε −1 f t +ε − f t exists in the topology on B. To see that this is all right, we note that the function t → G f t + g t 3.3.15 is continuous in t and therefore t → t G f s + g s ds 3.3.16 exists and is a continuously differentiable B-valued function. Formula 3.3.12 implies that f t = t G f s + g s ds 3.3.17 and it follows that t → f t is continuously differentiable and 3.3.14 holds. Let I t t ≥0 be the continuous-time random walk with kernel a S . This process solves the martingale problem for G, and therefore E i [ f t I ] = E i [ f I t ] − t E i [ ∂ ∂ s + G f t −s I s ]ds = E i [ f I t ] + t E i [g t −s I s ]ds. 3.3.18 This is formula 3.3.13.

3.3.3 Spatially ergodic measures

The σ -field of shift-invariant events is S : = {A ∈ B K : T −1 i A = A ∀i ∈ }. 3.3.19 A probability measure µ on K is spatially ergodic if for every A ∈ S either µ A = 1 or µA = 0. We state the following standard ergodic theorem in L 2 without proof see [24]. Lemma 3.3.2 For n = 1, 2, . . ., let p n : → [0, ∞ be functions satisfying i p n i = 1 and lim n →∞ k | p n i − k − p n j − k| = 0 ∀i, j ∈ . 3.3.20 Let X = X i i ∈ be a family of K -valued random variables with shift-invariant ergodic law L X . If E[X ] = θ, then lim n →∞ E θ − i p n i X i 2 = 0. 3.3.21 In our case, probability distributions p n satisfying 3.3.20 will arise in the follow- ing way. Lemma 3.3.3 Let P : [0, ∞ × → R be as in 3.3.10. Then for any i, j ∈ : lim t →∞ k |P t i − k − P t j − k| = 0. 3.3.22 Proof of Lemma 3.3.3: We use the Ornstein coupling [25]. To see how this works for random walks on arbitrary Abelian groups, let ⊂ be a set such that a S k 0 for each k ∈ and such that of each k ∈ with a S k 0, either k or −k but not both is in . By irreducibility, we can decompose j − i as j − i = k ∈ nkk, 3.3.23 where nk ∈ Z and only a finite number of nk’s are non-zero. We may couple two random walks starting in points i and j in such a way that they always make a jump of size k or −k at the same time. They choose k or −k independently of each other, until the walk starting in j has made nk more of these jumps than the walk starting in i . After that, they choose either both k or both −k. This coupling is obviously successful and Lemma 3.3.3 now follows easily.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52