The renormalization transformation Introduction

By Theorem 2.1.5, in the limit as N → ∞, the conditional probability of X N ξ N k t ∈ dy given X N,k ξ N k t = x is given by the kernel K g,k x d y : = ν F k −1 g,c k · · · ν g,c 1 x d y, 2.1.30 with the composition as in 2.1.29. The following can be found in [1], equation 1.7: Theorem 2.1.7 Fix g ∈ H Li p . As k → ∞, then in the sense of uniform conver- gence of probability kernels: K g,k → K ∞ , 2.1.31 where the limiting kernel K ∞ is universal in g and given by K ∞ θ = 1 − θδ + θδ 1 θ ∈ [0, 1]. 2.1.32 Note that, for any k ≥ l, the conditional probability of X N,l ξ N k t ∈ dy given X N,k ξ N k t = x is described by the kernel ν F k −1 g,c k · · · ν F l g,c l +1 , which is just the kernel in 2.1.30 with g replaced by F l g and c k k ≥1 replaced by c k k ≥l+1 . Using Theorem 2.1.5 and the fact that, with Z t as in 2.1.28, we have E[Z t] = θ ∀t ≥ 0, Theorem 2.1.7 translates into the following statement about the infinite system: Theorem 2.1.8 Fix g ∈ H Li p , θ ∈ [0, 1], l ≥ 0 and t 0. Then, in the sense of convergence in law: lim k →∞ lim N →∞ X N,l N k t = Y, 2.1.33 where the law of Y is given by L Y = 1 − θδ + θδ 1 . Thus, the system locally ends up in one of the traps 0 or 1. This behavior is called clustering and should be interpreted as saying that, for large N and k, the block averages spend most of their time close to the boundaries of the state space [0, 1]. Condition 2.1.10 in fact characterizes the clustering regime for the system in the N → ∞ limit. For finite N , clustering of the system can be related to the recurrence of the random walk with kernel a N ξ , η given in 2.1.17 see [6]. For a discussion of clustering in the case gx = r x1 − x, both for N → ∞ and for finite N , see [10], Theorems 3 and 6. We next turn to the behavior of F k g as k → ∞. Note that since ν g,c θ itself depends on g, the transformation F c is a non-linear integral transform. As such it is a rather difficult object to study in detail. Nevertheless, [1] gives a complete description of the asymptotic behavior of its iterates. The results show that there is a unique ‘fixed shape’ g ∗ ∈ H Li p that attracts all orbits after appropriate scaling, as follows: Theorem 2.1.9 a Let g ∗ x = x1 − x. The 1-parameter family of functions g = rg ∗ r 0 are fixed shapes under F c : F c rg ∗ = c c + r rg ∗ . 2.1.34 b For all g ∈ H Li p lim k →∞ σ k F k g = g ∗ uniformly on [0, 1], 2.1.35 where σ k : = k l =1 c −1 l . c Let H 1 : = {g ∈ H Li p : lim inf x →0 x −2 gx 0 and lim inf x →1 1 − x −2 gx 0 }. 2.1.36 Then for all g ∈ H 1 lim k →∞ σ k F k g − g ∗ H Li p = 0, 2.1.37 where g H Li p : = sup x ∈0,1 gx g ∗ x . 2.1.38 To be able to state the implications of Theorem 2.1.9 for the infinite system, we must rescale the time once more, now to compensate not for the large N but for the large k. Indeed, by an easy scaling property of the Z g,c θ defined in 2.1.28, we can rewrite Theorem 2.1.6 as X N,k σ k N k t t ≥0 ⇒ Z σ k F k g,σ k c k θ t t ≥0 as N → ∞. 2.1.39 In view of 2.1.35, the most interesting behavior now occurs when σ k c k tends to some limit as k → ∞. From Theorem 2.1.9 b we get, by a simple application of [40], Theorem 11.1.4, the following: Theorem 2.1.10 If lim k →∞ σ k c k = c ∗ ∈ [0, ∞, then in the sense of weak conver- gence of the law in path space C [0, ∞: lim k →∞ lim N →∞ X N,k σ k N k t t ≥0 = Z g ∗ , c ∗ θ t t ≥0 . 2.1.40 For example, if c k = ab k with a ∈ 0, ∞ and b ∈ 0, 1, then lim k →∞ σ k c k = a 2 b 1 −b . The results in Theorems 2.1.9 and 2.1.10 show that our system displays com- plete universality on large space-time scales. For large k and in the limit as

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52