Special models: Corollary 3.1.7 Examples

Proof of Lemma 3.2.1: By the Stone-Weierstrass theorem, C 2 K is dense in C K for each finite ⊂ . Pick a bijection between and the positive integers and fix a point z ∈ K . Define, for x ∈ K , π n x : = x 1 , x 2 , . . . , x n , z, z, . . .. 3.2.1 The sets πK are uniformly dense in K , and since each f ∈ C K is uni- formly continuous, it is the uniform limit of functions f n x : = f π n x 3.2.2 depending on finitely many coordinates. Hence C fin K is dense in C K . To see that A satisfies the maximum principle, fix f ∈ C 2 fin K and suppose that f assumes its maximum in a point x. Fix an i ∈ . Keeping all x j j =i fixed, f assumes its maximum as a function of the remaining variable in the point x i . By the convexity of K it is easily checked that j α a j − ix α j − x α i ∂ ∂ x α i f x ≤ 0. 3.2.3 Condition 3.1.8 ensures that αβ w αβ x i ∂ 2 ∂ x α i ∂ x β i f x ≤ 0, 3.2.4 as can be seen by writing the matrix wx in diagonal form: αβ w αβ x i ∂ 2 ∂ x α i ∂ x β i f x = ˜α λ ˜α x ∂ 2 ∂ x ˜α 2 f x 3.2.5 for an appropriate orthonormal basis x ˜α of R d . By condition 3.1.8, the only non-zero terms in 3.2.5 occur for directions that lie in the space I x , and for such directions the second derivative is non-positive. We equip K with the Borel σ -field generated by the open sets. We write D K [0, ∞ for the cadlag functions from [0, ∞ to K , equipped with the metric d from chapter 3, section 5 of [16], which generates the Skorohod topology. By C K [0, ∞ we denote the continuous functions from [0, ∞ to K . On D K [0, ∞ we choose the Borel σ -field generated by the open sets of this topology. We equip the space of probability measures on D K [0, ∞ with the topology of weak con- vergence and we denote weak convergence of the laws of processes with sample paths in D K [0, ∞ by ⇒. Thus X n ⇒ X means that E[ f X n ] → E[ f X] as n → ∞ 3.2.6 for all bounded continuous real functions f on D K [0, ∞. By a solution to the martingale problem we always mean a solution with sample paths in D K [0, ∞. Lemma 3.2.2 For each probability measure on K there exists a solution to the martingale problem for A with initial condition µ. Each solution to the martingale problem for A has sample paths in C K [0, ∞. The space of solutions to the mar- tingale problem for A is compact in the topology of weak convergence. If X n , X solve the martingale problem for A, then X n ⇒ X implies X n t ⇒ X t for all t ≥ 0. Proof of Lemma 3.2.2: Existence of solutions to the martingale problem for A follows from Lemma 3.2.1 in combination with Theorem 5.4 and Remark 5.5 from chapter 4 of [16]. The continuity of sample paths can be shown by Problem 19 from the same chapter: for this one needs to find for every x ∈ K a function f x ∈ D A such that for every ε 0 inf { f x y − f x x : x, y ∈ K , dx, y ≥ ε} 0 3.2.7 and such that lim x →y A f x y = A f y y = 0 for all x ∈ K . Instead of working with A, one may also use the closure of A. Applying Lemma 3.4.5 below and defining γ i i ∈ as in 3.2.14, it is not hard to check that the functions f x y : = i γ i |x i − y i | 3 3.2.8 satisfy the requirements. Compactness of the space of solutions follows from Lemma 5.1 and Re- mark 5.2 from chapter 4 of [16]. Finally, weak convergence in path space of solu- tions X n to the martingale problem for A implies convergence of finite-dimensional distributions by Theorem 7.8 from chapter 3 of [16] and the continuity of sample paths. Proof of Theorem 3.1.1: Existence of solutions to the martingale problem for A is guaranteed by Lemma 3.2.2. Corollary 3.4 from chapter 5 of [16] generalizes in a straightforward way to the infinite-dimensional case, and so for each solution to the martingale problem for A we can find a weak solution to the stochastic differential equation 3.1.2. We next show that for each shift-invariant initial condition µ, there exists a shift-invariant solution to 3.1.2. It suffices to construct a shift-invariant solution to the martingale problem for A. We define a shift operation on D K [0, ∞ in the obvious way, by putting T j x i t : = x i − j t i, j ∈ , t ≥ 0. 3.2.9 Let X be a solution to the martingale problem for A with initial condition L X 0 = µ. By Lemma 3.3.3 below, there exists a sequence of functions p n : → [0, ∞ such that i p n i = 1 for each n and lim n →∞ k | p n i − k − p n j − k| = 0 ∀i, j ∈ . 3.2.10 Let X n be a sequence of processes with sample paths in D K [0, ∞ with law L X n = k p n k L T k X . 3.2.11 Then each X n solves the martingale problem for A with initial condition k p n kµ ◦ T −1 k = µ, where we use that µ is shift-invariant. By Lemma 3.2.2 we can find a subsequence X nm and a solution X ∞ to the martingale problem for A such that X nm ⇒ X ∞ . Clearly X ∞ has initial condition L X ∞ = µ and for any bounded continuous real function f on D K [0, ∞ we have |E[ f T j X nm ] − E[ f X nm ] | = k p nm kE[ f T j T k X ] − i p nm kE[ f T k X ] = k p nm k − jE[ f T k X ] − i p nm kE[ f T k X ] ≤ k | p nm k − j − p nm k | f ∞ . 3.2.12 By 3.2.10 it follows that T j X ∞ and X ∞ have the same distribution as a proba- bility measure on D K [0, ∞, which implies that their finite-dimensional distribu- tions agree. Hence X ∞ is shift-invariant.

3.2.2 Proof of Theorem 3.1.2

Define a normalized interaction kernel ˜a and a normalizing constant Z by Z : = i ai ˜ai := Z −1 ai . 3.2.13 For each M 1 there exist [38] strictly positive numbers γ i i ∈ such that i γ i ∞ and i ˜a j − iγ i ≤ Mγ j j ∈ . 3.2.14

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52