Biological background Introduction and main results

3.1.5 Clustering: Theorem 3.1.3

In order to state our first result, we introduce the symmetrized kernel a S i : = ai + a−i i ∈ . 3.1.26 By the random walk with kernel a S we mean a continuous-time random walk on that jumps from a point j to a point i with rate a S j − i. By ⇒ we denote weak convergence of the laws of processes as probability measures on K . Theorem 3.1.3 Let X be a shift-invariant solution to 3.1.2 and assume that there exists a K -valued random variable X ∞ such that X t ⇒ X ∞ as t → ∞. 3.1.27 If the random walk with kernel a S is recurrent, then i P[X i ∞ ∈ ∂ w K ∀i ∈ ] = 1 ii P[X i ∞ = X j ∞ ∀i, j ∈ ] = 1. 3.1.28 If the random walk with kernel a S is transient, E[X 0] ∈ ∂ w K and L X 0 is spatially ergodic, then i P[X i ∞ ∈ ∂ w K ] 1 ∀i ∈ ii P[X i ∞ = X j ∞] 1 ∀i = j ∈ . 3.1.29 Note that Theorem 3.1.3 makes a statement about the possible properties of a lim- iting distribution X ∞, but that it does not answer the question whether such a limiting distribution actually exists. Provided we know in some way that X t converges weakly to a limit, Theorem 3.1.3 says the following. In the recurrent case, the configuration in any finite window ⊂ after a sufficiently long time becomes almost flat. At large but finite time in the system there are regions, called ‘clusters’, of typical sizes that grow with time, in which all components are almost equal. This behavior is called ‘clustering’. The behavior is similar to that of the voter model in low d ≤ 2 dimension. In fact, 2-type models as in 3.1.16 are believed to be asymptotically equivalent, in some sense, to the voter model on the same lattice. See [7] for some pictures of simulations of the clustering voter model on Z 2 . In the transient case, such clustering behavior cannot occur. Instead, the system converges to a ‘true’ equilibrium X ∞. We refer to this as ‘stable’ behavior. Although it seems hard to imagine a shift-invariant solution to 3.1.2 that does not converge as t → ∞, the convergence in 3.1.27 is in general hard to prove. For finite , one may exploit the fact that i X i t is a bounded martingale to get the convergence in 3.1.27, not only in the sense of weak convergence, but also in L 2 -norm. 1 For infinite , convergence in L 2 -norm in general does not hold. 1 For the interested reader we have added a proof of this fact in section 3.6. For the 2-type model, the convergence in 3.1.27 has been proved in [6, 26]. In [6], this is achieved for transient a S by a coupling technique, and for recurrent a S by a ‘duality comparison argument’. This argument, as well as Theorem 3.1.3, are based on calculations involving covariances between components.

3.1.6 Covariance calculations: Lemma 3.1.4

In this section we explain the relation between covariance calculations, the random walk with kernel a S , and clustering properties of the system in 3.1.2. For any two K -valued random variables X and Y the covariance of X and Y is the quantity CovX, Y = E[X · Y ] − E[X] · E[Y ], 3.1.30 where · denotes the inner product x · y = α x α y α . By tr w we denote the trace tr wx = d α =1 w αα x x ∈ K 3.1.31 of the diffusion matrix w. The following lemma follows from a little calculation involving Itˆo’s formula and a bit of continuity. Lemma 3.1.4 Let X be a shift-invariant solution of 3.1.2. Then there exists a θ ∈ K such that E[X i t] = θ t ≥ 0, i ∈ 3.1.32 and there exists a function C : [0, ∞ × → R such that CovX i t, X j t = C t j − i t ≥ 0, i, j ∈ . 3.1.33 For each i , the function t → C t i is continuously differentiable and satisfies ∂ ∂ t C t i = j a S j − iC t j − C t i + 2δ i 0 E[tr wX t]. 3.1.34 The right-hand side of 3.1.34 contains the operator G f i : = j a S j − i f j − f i, 3.1.35 acting on bounded functions f : → R . G is the generator of the random walk with kernel a S . For solutions to 3.1.34 we have the representation C t i = j P t j − iC j + 2 t P s − iE[trwX t − s]ds, 3.1.36

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52