Clustering: Theorem 3.1.3 Introduction and main results

Let us assume that for each initial condition x ∈ K , the non-interacting equa- tion 3.1.19 has a unique weak solution X x t t ≥0 , and let us denote the associated semigroup on BK by S t f x : = E[ f X x t] x ∈ K , t ≥ 0. 3.1.40 We add a ‘last element’ S ∞ to this semigroup by defining S ∞ f x : = E[ f X x ∞] = K Ŵ x d y f y x ∈ K , f ∈ BK , 3.1.41 where Ŵ x x ∈K is the boundary distribution associated with w, introduced in 3.1.22. With this notation, we formulate a condition that will guarantee that the long- time behavior of the non-interacting model is not changed by the introduction of a linear drift. Definition 3.1.1 Let w be a diffusion matrix on K such that weak uniqueness holds for 3.1.19, and let Ŵ x x ∈K be the associated boundary distribution. We say that Ŵ x x ∈K is stable against a linear drift if S ∞ T θ, t S ∞ f = T θ, t S ∞ f ∀θ ∈ K , t ≥ 0, f ∈ BK . 3.1.42 Since S ∞ S ∞ = S ∞ , we can read equation 3.1.42 as: S ∞ and T θ, t commute on functions of the form S ∞ f . For technical reasons, we will restrict ourselves to the case that S ∞ C K ⊂ C K . 3.1.43 This condition guarantees that S ∞ f is a w-harmonic function for all f ∈ C K , where the space of w-harmonic functions is defined as H : = { f ∈ D G : G f = 0}, 3.1.44 with G the full generator of the process in 3.1.19 and D G its domain. In par- ticular, C 2 -functions are w-harmonic if and only if they solve the equation αβ w αβ x ∂ 2 ∂ x α ∂ x β f x = 0 x ∈ K . 3.1.45 It turns out that condition 3.1.42 is equivalent to T θ, t H ⊂ H ∀θ ∈ K , t ≥ 0. 3.1.46 That is, for each θ the space of w-harmonic functions is invariant under the semi- group T θ, t t ≥0 . With these definitions, our main result reads as follows. Theorem 3.1.5 Let X be a shift-invariant solution to 3.1.2 such that L X 0 is spatially ergodic and E[X i 0] = θ i ∈ 3.1.47 for some θ ∈ K . Assume that weak uniqueness holds for the non-interacting equation 3.1.19, that the associated boundary distribution is stable against a linear drift, that S ∞ C K ⊂ C K and that H is contained in the bp-closure of C 2 K ∩ H . If the random walk with kernel a S is recurrent, then there exists a K -valued random variable X ∞ such that X t ⇒ X ∞ as t → ∞, 3.1.48 where L X i ∞ = Ŵ θ i ∈ . 3.1.49 The bp-closure of a set is the smallest set containing it that is closed under bounded pointwise limits. Note that by Theorem 3.1.3, P[X i ∞ = X j ∞ ∀i, j ∈ ] = 1. Thus, the fact that the boundary distribution is stable against a linear drift not only allows us to conclude that X t converges to a limit X ∞, it also allows us to completely specify its distribution. This distribution turns out to be universal in all recurrent random walk kernels a S and Abelian groups , and in all diffusion matrices w sharing the same boundary distribution Ŵ x x ∈K .

3.1.8 Harmonic functions: Lemma 3.1.6

To see what goes into proving Theorem 3.1.5, we mention the following: Lemma 3.1.6 Let X be a solution to 3.1.2. Assume that weak uniqueness holds for the non-interacting equation 3.1.19, that the associated boundary distribution is stable against a linear drift, that S ∞ C K ⊂ C K and that H is contained in the bp-closure of C 2 K ∩ H . Then E[ f X i t] = E f j P t j −iX j ∀ f ∈ H, i ∈ , t ≥ 0, 3.1.50 where P t j − i is the probability that the random walk with kernel a starting from i , is in j at time t. The situation is particularly simple when X i = θ for all i ∈ . In that case E[ f X i t] = f θ ∀ f ∈ H, i ∈ , t ≥ 0. 3.1.51

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52