Higher-dimensional generalizations Overview of the three articles

It is not clear from our definitions what function g ∗ could be a fixed shape under F c , or in fact whether such a function exists at all. In the one-dimensional case, the fact that gx = x1 − x is a fixed shape follows from the equilibrium conditions for the time evolution of the first and second moments of solutions to the martingale problem for A g,c x . We found out that this proof immediately extends to the case that K = {x ∈ R d : |x| ≤ 1} g ∗ x = 1 − |x| 2 . 1.2.32 In view of the interpretation of our model as explained in section 1.1, this case is rather unsatisfactory. We would rather like to be able to treat the p-type p-tuple model see section 1.1.3 or the 4-type 2 + 2-tuple model see section 1.1.7. For the latter, K = [0, 1] 2 and the diffusion function gx = x 1 1 − x 1 x 2 1 − x 2 1.2.33 arises in a natural way as the continuum limit of a discrete model. A natural idea would be to see if this function is a fixed shape under F c . But this turns out not to be the case. We found out that there is no explicit formula for F c in dimensions d ≥ 2. This has the following reason. The equilibrium ν g,c x solves the equation ν g,c x |A g,c x f = 0 ∀ f ∈ C 2 K , 1.2.34 where we use the notation µ| f := K f xµd x 1.2.35 for any probability measure µ on K and any function f ∈ C K . If ν g,c x has a sufficiently differentiable density, and also g is sufficiently smooth, then after an integration by parts we can rewrite 1.2.34 as A g,c x † ν g,c x | f = 0 ∀ f ∈ C 2 K , 1.2.36 so that for the density ν g,c x we find the partial differential equation A g,c x † ν g,c x = − α ∂ ∂ y α cx α − y α + α ∂ 2 ∂ y α 2 gy ν g,c x y = 0. 1.2.37 In vector notation we can write this equation in the form ∇ · T g,c x ν g,c x = 0, 1.2.38 where · denotes inner product and ∇ := ∂ ∂ x 1 , . . . , ∂ ∂ x d T : = T 1 , . . . , T d T α f y : = − cx α − y α + ∂ ∂ y α gy f y. 1.2.39 The vector T can be interpreted as the expected flux, i.e., it measures the net trans- port of particles at each point in the domain. Equation 1.2.38 now says that the divergence of the flux is zero. In some cases, the equilibrium even turns out to solve the stronger equation T α ν g,c x = 0 α = 1, . . . , d 1.2.40 i.e., the flux is zero. In this case we say that the equilibrium is reversible. This comes from the fact that the process, started in ν g,c x , is symmetric with respect to time reversal. A reversible equilibrium defines an L 2 -space of square-integrable with respect to ν g,c x functions, on which the operator A g,c x is self-adjoint, which has many technical advantages. In the one-dimensional case i.e., K is an interval, the equilibrium is always reversible, and equation 1.2.40 can easily be solved explicitly, leading to the explicit formula 1.2.20 for F c . However, in the higher- dimensional case one can show that the equilibrium is for most choices of the parameters not reversible and all we have for ν g,c x is equation 1.2.34, which we do not know how to solve explicitly. The idea that finally allowed us to get some control on F c , at least on a heuristic level, was to try an expansion in c −1 . For large c, the equilibrium ν g,c x is sharply peaked around the point x. A simple moment calculation shows that for sufficiently differentiable g: F c gx = gx + c −1 1 2 gx gx + O c −2 . 1.2.41 Here : = α ∂ 2 ∂ x α 2 is the Laplacian. If we want the right-hand side to be a multiple of g for all c ∈ 0, ∞, then g has to be a solution of the Dirichlet equation gx = λ 1.2.42 for some λ ∈ R . With boundary conditions gx = 0 for x ∈ ∂ K this equation has a unique solution for each λ. Thus, we found out that the only possible candidate for a fixed shape are the multiples of the function g ∗ ∈ C 2 K ◦ ∩ C K , defined as the unique solution of − 1 2 g ∗ x = 1 on K ◦ g ∗ x = 0 on ∂ K . 1.2.43

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52