Convergence of the drift

where the covariance of two K -valued random variables X and Y is defined as CovX, Y : = E[X · Y ] − E[X] · E[Y ] 4.4.6 with x · y := α x α y α the usual inner product on R d . A covariance calculation as in Swart [41] gives that for ξ ≤ k i ∂ ∂ s C s ξ = η a k i −1 N i η − ξ[C s η − C s ξ ] +2dδ 0,ξ E[gX N i β i t + s] − 2 c N i k i C s ξ , 4.4.7 where a k N is the k-block interaction kernel a k N ξ : = k l =ξ 1 N l c N l −1 . 4.4.8 Using our assumption about local equilibrium, we set ∂ ∂ s C s ξ = 0 in 4.4.7 and we assume that E[gX N i ξ β i t +s] does not depend on s. Now we can solve C s ξ in terms of E[gX N i ξ β i t + s] and a random walk on i : = {ξ ∈ N i : ξ ≤ k i − 1} 4.4.9 that jumps from site ξ to site η with rate a k i −1 N i η − ξ and that is killed in each site with rate c N i k i . Indeed, denoting by P i t η − ξ the probability that this random walk moves from site ξ to site η in time t, we have the representation C s ξ = d E[gX N i β i t + s] ∞ P i t ξ dt. 4.4.10 Note that with probability one the random walk is eventually killed, so that the integral on the right-hand side is finite. Picking ξ = 0, we get VarX N i β i t + s = dµ i E[gX N i β i t + s] 4.4.11 with µ i : = ∞ P i t 0dt 4.4.12 the expected time the random walk starting in 0 spends at the origin. STEP 3: It turns out that we can also express the expectation of any harmonic function of X N i ξ β i t + s in terms of the above random walk. Indeed, we have the representation see Swart [41], Lemma 3.1.6 in this dissertation E[ f X N i β i t + s] = E f ˆθ + ξ P i s ξ [X N i ξ β i t − ˆθ] 4.4.13 for any function f ∈ C 2 K ◦ ∩ C K satisfying α ∂ ∂ x α 2 f x = 0 x ∈ K ◦ . 4.4.14 Formula 4.4.13 says that harmonic functions of a component evolve under the semigroup associated with the evolution in 4.4.3 as if the diffusion function g is zero. The assumption of local equilibrium now leads to the relation E[ f X N i β i t + s] = f ˆθ, 4.4.15 which may be described by saying that the ‘harmonic mean’ of X N i β i t + s is ˆθ. We next note that the function x → dg ∗ x + |x − ˆθ| 2 4.4.16 is harmonic. Therefore, combining 4.4.15 and 4.4.11, we find that µ i E[gX N i β i t + s] = g ∗ ˆ θ − E[g ∗ X N i β i t + s]. 4.4.17 STEP 4: We will show that µ i ∼ σ k i i → ∞. Hence 4.4.17 becomes σ k i E[gX N i β i t + s] ∼ g ∗ ˆ θ − E[g ∗ X N i β i t + s] i → ∞. 4.4.18 Since σ k i tends to infinity and the right-hand side of 4.4.18 is bounded by g ∗ ∞ , it follows that E[gX N i β i t + s] tends to zero as i → ∞. This means that, with high probability, the components X N i ξ β i t + s of the system are concentrated near the boundary of K , i.e., the system clusters. Since g ∗ is continuous on K and zero on ∂ K , it follows that also E[g ∗ X N i β i t + s] tends to zero as i → ∞. Hence, using 4.4.18 once more we see that lim i →∞ σ k i E[gX N i β i t + s] = g ∗ ˆ θ . 4.4.19 STEP 5: We now consider the k i -block {ξ ∈ N i : ξ ≤ k i }. The k i − 1-blocks that the k i -block consists of, N i in total, all reach equilibrium on the time scale T i , and they do so independently of each other. Hence we expect a law of large numbers to apply. In particular, we expect that lim i →∞ Var N −k i i ξ : ξ≤k i σ k i gX N i ξ β i t + s = 0. 4.4.20

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52