Proof of Theorem 3.1.1 Proofs of Theorems 3.1.1 and 3.1.2

Let X be a solution to the martingale problem for A with initial condition L X 0 = µ. By Lemma 3.3.3 below, there exists a sequence of functions p n : → [0, ∞ such that i p n i = 1 for each n and lim n →∞ k | p n i − k − p n j − k| = 0 ∀i, j ∈ . 3.2.10 Let X n be a sequence of processes with sample paths in D K [0, ∞ with law L X n = k p n k L T k X . 3.2.11 Then each X n solves the martingale problem for A with initial condition k p n kµ ◦ T −1 k = µ, where we use that µ is shift-invariant. By Lemma 3.2.2 we can find a subsequence X nm and a solution X ∞ to the martingale problem for A such that X nm ⇒ X ∞ . Clearly X ∞ has initial condition L X ∞ = µ and for any bounded continuous real function f on D K [0, ∞ we have |E[ f T j X nm ] − E[ f X nm ] | = k p nm kE[ f T j T k X ] − i p nm kE[ f T k X ] = k p nm k − jE[ f T k X ] − i p nm kE[ f T k X ] ≤ k | p nm k − j − p nm k | f ∞ . 3.2.12 By 3.2.10 it follows that T j X ∞ and X ∞ have the same distribution as a proba- bility measure on D K [0, ∞, which implies that their finite-dimensional distribu- tions agree. Hence X ∞ is shift-invariant.

3.2.2 Proof of Theorem 3.1.2

Define a normalized interaction kernel ˜a and a normalizing constant Z by Z : = i ai ˜ai := Z −1 ai . 3.2.13 For each M 1 there exist [38] strictly positive numbers γ i i ∈ such that i γ i ∞ and i ˜a j − iγ i ≤ Mγ j j ∈ . 3.2.14 Let L 2 γ be the Hilbert space L 2 γ : = {x ∈ R d : i γ i |x i | 2 ∞} 3.2.15 with inner product x, y γ : = i γ i x i · y i , 3.2.16 where · denotes the standard inner product on R d . Clearly, K ⊂ L 2 γ and the topology on K coincides with the topology on L 2 γ . We write x γ : = x, x γ for the Hilbert norm on L 2 γ . Set t : = X t − ˜Xt, where X and ˜X are solutions to 3.1.2, starting in X 0 = ˜X0 and adapted to the same set of Brownian motions. Then d α i t = Z j ˜a j − i α j t − α i tdt + β σ αβ X i t − σ αβ ˜ X i td B β i t. 3.2.17 By Itˆo’s formula we see that E T 2 γ = T E 2 i α γ i α i tZ j ˜a j − i α j t − α i t + i γ i αβ σ αβ X i t − σ αβ ˜ X i t 2 dt. 3.2.18 By the Lipschitz property of σ we have αβ σ αβ x − σ αβ y 2 1 2 ≤ L|x − y| x, y ∈ K 3.2.19 for some L ∞. With ˜a t α i : = j ˜a j − i α j t it follows that E T 2 γ ≤ T E 2Z t, ˜a t − t γ + L 2 t 2 γ dt ≤ T E 2Z t γ ˜a t γ − t 2 γ + L 2 t 2 γ dt ≤ T 2Z M 1 2 − 1 + L 2 E t 2 γ dt, 3.2.20 where we used Cauchy-Schwarz and the fact that, by Jensen’s inequality and by 3.2.14, ˜ax 2 γ = i γ i j ˜a j − ix j 2 ≤ i j γ i ˜a j − i|x j | 2 ≤ j Mγ j |x j | 2 = Mx 2 γ . 3.2.21 The result now follows from Gronwall’s lemma.

3.3 Proofs of Theorem 3.1.3 and Lemma 3.1.4

3.3.1 Proof of Lemma 3.1.4

Note that, since any solution X to 3.1.2 solves the martingale problem for the operator A in 3.1.10, we have for any f ∈ C 2 fin K E[ f X t] − E[ f X 0] = t E[ A f X s]ds. 3.3.1 Using the continuity of A f , the continuity of the sample paths of X , and bounded convergence, we see that the function t → E[A f X t] is continuous. It follows that the function t → E[ f X t] is continuously differentiable and satisfies ∂ ∂ t E[ f X t] = E[A f X t]. 3.3.2 Applying the remarks above to the function f x = x α i and using bounded conver- gence to interchange an infinite sum and expectation, we see that ∂ ∂ t E[X α i t] = j a j − iE[X α j ] − E[X α i ]. 3.3.3 When X is shift-invariant, there clearly exist functions θ : [0, ∞ → K and C : [0, ∞ × → R such that E[X α i t] = θ α t CovX i t, X j t = C t j − i t ≥ 0, i, j ∈ , α = 1, . . . , d. 3.3.4 Applying this to 3.3.3, we see that ∂ ∂ t θ t = 0 and hence E[X i t] = θ t ≥ 0, i ∈ 3.3.5 for some θ ∈ K . Let us put ˜ X i : = X i − θ. Applying 3.3.2 to the function f x = α x α i − θ α x α j − θ α , using bounded convergence to interchange an infinite sum and ex- pectation, we get ∂ ∂ t CovX i t, X j t = k,l ak − lE α ˜ X α k t − ˜X α l tδ il ˜X α j t + δ jl ˜X α i t +2δ i j E[tr wX t]. 3.3.6 Inserting 3.3.4 we get ∂ ∂ t C t j − i = k ak − iC t j − k − C t j − i + k ak − jC t k − i − C t j − i +2δ i j E[tr wX t]. 3.3.7 Substituting ˜ı := j − i, ˜ := k − i and ˜k := j − k and reordering the summations, we find that ∂ ∂ t C t ˜ı = ˜ a ˜C t ˜ı − ˜ − C t ˜ı + ˜k a − ˜kC t ˜ı − ˜k − C t ˜ı +2δ ˜ı0 E[tr wX t]. 3.3.8 This shows that formula 3.1.34 holds.

3.3.2 Random walk representations

Let B be the Banach space of bounded real functions on , equipped with the supremum norm. The operator G in 3.1.35 is a bounded linear operator on B. We define a Feller semigroup on B by P t f : = e t G f, 3.3.9 where e t G : = ∞ n =0 1 n t G n . This semigroup corresponds to a continuous-time random walk I t t ≥0 on that jumps from i to j with rate a S j − i. By shift- invariance there exists a function P : [0, ∞ × → R such that P t j − i = P i [I t = j]. 3.3.10 We can consider P t j − i as the i, j-th element of the matrix of the operator P t in 3.3.9, in the following sense P t f i = j P t j − i f j. 3.3.11

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52