Block immobility Convergence of the diffusion rate

where a i ξ : = k i −1 k =ξ 1 N k i c N i k −1 ξ ∈ i . 4.4.39 Lemma 4.4.3 below gives us an estimate of how close the expectation of functions f i of large k i −1-blocks is to their equilibrium value with respect to the dynamics described by the operator A i x ki . Lemma 4.4.3 For i ∈ N let X N i be a solution of 4.1.5 with initial condition 4.4.22 and let τ i be as in Section 4.4.2. For i ∈ N , let f i ∈ C 2 K i , let ∇ ξ f i : = ∂ ∂ x α ξ f i α =1,...,d , 4.4.40 and let ∇ ξ f i ∞ be the supremum norm of |∇ ξ f i | the Euclidean norm of ∇ ξ f i . Then there exist constants M 1 , M 2 such that for all i ∈ N , x ∈ K Ni and ω ∈ C ξ i , K [0, ∞ E ω A i x ki f i X N i τ i ≤ 2λ −1 i f i ∞ + M 1 c k i −1 N 1 − 3 2 k i i λ 1 2 i + M 2 c k i N −k i i ξ ∈ i ∇ ξ f i ∞ . 4.4.41 Here, in the left-hand side of 4.4.41, we lift the function A i x k f i to the space K Ni in the obvious way. Proof of Lemma 4.4.3: Use the fact that the process M in 4.4.25 is a martingale and apply optional stopping to see that E ω [ f i X N i τ i ] − E ω [ f i X N i 0] = E ω τ i A f i X N i t dt , 4.4.42 where for x ∈ K Ni A f i x = ξ ∈ i ,α ∞ k =1 c N k −1 [x k,α ξ − x α ξ ] ∂ ∂ x α ξ f i x + ξ ∈ i ,α gx ξ ∂ ∂ x α ξ 2 f i x, 4.4.43 and we have lifted the function f i to K Ni in the obvious way. Note that ξ i ∈ i , so that in our summations we do not have to write ξ = ξ i . Formula 4.4.42 can be rewritten as ∞ dt E ω f i X N i t λ −1 i e −tλ i − E ω f i X N i β i t = ∞ dt E ω t du A f i X N i u λ −1 i e −tλ i = ∞ dt t du E ω A f i X N i u λ −1 i e −tλ i = −e −tλ i t du E ω A f i X N i u ∞ t =0 − ∞ dt −e −tλ i E ω A f i X N i t = ∞ dt E ω A f i X N i t e −tλ i , 4.4.44 leading to the equation E ω A f i X N i τ i = λ −1 i E ω f i X N i τ i − E ω f i X N i . 4.4.45 Here A f i X N i τ i = ξ ∈ i ∞ k =1 c N i k −1 α [X N i , k,α ξ τ i − X N i ,α ξ τ i ] ∂ ∂ x α ξ f i X N i τ i + ξ ∈ i gX N i ξ τ i α ∂ ∂ x α ξ 2 f i X N i τ i . 4.4.46 In view of our heuristic reasoning in Section 4.4.1, we write this as A f i X N i τ i = ξ ∈ i k i −1 k =1 c N i k −1 α [X N i , k,α ξ τ i − X N i ,α ξ τ i ] ∂ ∂ x α ξ f i X N i τ i + ξ ∈ i gX N i ξ τ i α ∂ ∂ x α ξ 2 f i X N i τ i + ξ ∈ i c N i k i −1 α [x k i ,α − X N i ,α ξ τ i ] ∂ ∂ x α ξ f i X N i τ i + ξ ∈ i c N i k i −1 α [X N i , k i ,α τ i − x k i ,α ] ∂ ∂ x α ξ f i X N i τ i + ξ ∈ i ∞ k =k i +1 c N i k −1 α [X N i , k,α τ i − X N i ,α ξ τ i ] ∂ ∂ x α ξ f i X N i τ i . 4.4.47 Here the first two terms represent the ‘internal’ evolution of the k i − 1-block around the origin. The third term comes from their interaction with the k i -block average, which for an appropriate choice of λ i is essentially fixed to its value at time 0. The fourth term is an error term compensating for the fact that the k i -block is not completely fixed at its value at time 0. The fifth term describes the small interaction with the k-blocks for k k i . Combining 4.4.45 and 4.4.47, we arrive at E ω A i x ki f i X N i τ i = λ −1 i E ω f i X N i τ i − E ω f i X N i β i t − c N i k i −1 ξ ∈ i E ω α [X N i , k i ,α τ i − x k i ,α ] ∂ ∂ x α ξ f i X N i τ i − ∞ k =k i +1 c N i k −1 ξ ∈ i E ω α [X N i , k,α τ i − X N i ,α ξ τ i ] ∂ ∂ x α ξ f i X N i τ i . 4.4.48 From this it follows that E ω A i x ki f i X N i τ i ≤ 2λ −1 i f i ∞ + c N i k i −1 E ω X N i , k i τ i − x k i ξ ∈ i ∇ ξ f i ∞ +2R c N i k i ξ ∈ i ∇ ξ f i ∞ , 4.4.49 where we use that N i ≥ 2 and c 1. We now note that by Corollary 4.4.2 E ω X N i , k i τ i − x k i 2 ≤ E ω X N,k τ i − x k i 2 ≤ Mλ i N −k i i . 4.4.50 Inserting this into 4.4.49, we arrive at 4.4.41.

4.4.5 Equilibrium calculations

In this section, we construct ‘test functions’ f i that we will insert into the almost- equilibrium equation in Lemma 4.4.3 to draw certain conclusions about the behav- ior of the k i − 1-blocks. We split the operator A i ˆθ in 4.4.38 as follows: A i ˆθ = B i ˆθ + C i , 4.4.51

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52