Multiple space-time scale analysis

Theorem 2.1.9 a Let g ∗ x = x1 − x. The 1-parameter family of functions g = rg ∗ r 0 are fixed shapes under F c : F c rg ∗ = c c + r rg ∗ . 2.1.34 b For all g ∈ H Li p lim k →∞ σ k F k g = g ∗ uniformly on [0, 1], 2.1.35 where σ k : = k l =1 c −1 l . c Let H 1 : = {g ∈ H Li p : lim inf x →0 x −2 gx 0 and lim inf x →1 1 − x −2 gx 0 }. 2.1.36 Then for all g ∈ H 1 lim k →∞ σ k F k g − g ∗ H Li p = 0, 2.1.37 where g H Li p : = sup x ∈0,1 gx g ∗ x . 2.1.38 To be able to state the implications of Theorem 2.1.9 for the infinite system, we must rescale the time once more, now to compensate not for the large N but for the large k. Indeed, by an easy scaling property of the Z g,c θ defined in 2.1.28, we can rewrite Theorem 2.1.6 as X N,k σ k N k t t ≥0 ⇒ Z σ k F k g,σ k c k θ t t ≥0 as N → ∞. 2.1.39 In view of 2.1.35, the most interesting behavior now occurs when σ k c k tends to some limit as k → ∞. From Theorem 2.1.9 b we get, by a simple application of [40], Theorem 11.1.4, the following: Theorem 2.1.10 If lim k →∞ σ k c k = c ∗ ∈ [0, ∞, then in the sense of weak conver- gence of the law in path space C [0, ∞: lim k →∞ lim N →∞ X N,k σ k N k t t ≥0 = Z g ∗ , c ∗ θ t t ≥0 . 2.1.40 For example, if c k = ab k with a ∈ 0, ∞ and b ∈ 0, 1, then lim k →∞ σ k c k = a 2 b 1 −b . The results in Theorems 2.1.9 and 2.1.10 show that our system displays com- plete universality on large space-time scales. For large k and in the limit as N → ∞ the k-blocks approximately perform the diffusion in 2.1.28 with dif- fusion function g ∗ and with attraction constant c ∗ , and this behavior is completely universal in the diffusion function g of the single components. Theorem 2.1.9 c is important for the study of how clustering occurs. In fact, under 2.1.37 the clustering turns out to be universal in g see [10], Corollary at Theorem 5. It turns out that the class H 1 in 2.1.36 is sharp: if lim sup x →0 x −2 gx = 0 or lim sup x →0 1 − x −2 gx = 0, then σ k F k g does not converge in the norm · H Li p see [1].

2.2 Results for d

≥ 1 In this section we present our best results towards extending the model in sec- tion 2.1 to higher dimension. In sections 2.2.1 and 2.2.2 we formulate a general program, and specify the particular model that is the subject of the present paper. In section 2.2.3 we present our theorems on the renormalization transformations F c c ∈ 0, ∞ arising in that model. The theorems are stated in terms of certain classes of functions H ′ and H ′′ . These are essentially the largest domains on which we can define our renormalization transformations F c , resp. the iterates F k . For the results to make sense, it remains to be shown that these classes are not empty. This task is, with limited success, taken up in section 2.2.4. In section 2.2.5 we in- dicate some of the difficulties that make life hard in d ≥ 2. Finally, in section 2.2.6, some of the more urgent open problems are discussed. Proofs are given in sections 2.3–2.5.

2.2.1 Generalizations to different state spaces

The renormalization techniques described in the last section are not restricted to models with state space [0, 1]. The construction of more general models could be described in the form of the following program: 1. Choose an open convex domain D ⊂ R d and a class H of diffusion matrices on D i.e., the equivalents of [0, 1] and H Li p in section 2.1. Prove as in Theorem 2.1.1 that for all g ∈ H , θ ∈ D, c ∈ 0, ∞ the martingale problem is well-posed for the differential operator A f x : = d i =1 cθ i − x i ∂ ∂ x i + d i, j =1 g i j x ∂ 2 ∂ x i ∂ x j f x. 2.2.1

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52