The read methods ObjectInputStream
10.2.1.3 Methods that customize the serialization mechanism
The last group of methods consists mostly of protected methods that provide hooks that allow the serialization mechanism itself, rather than the data associated to a particular class, to be customized. These methods are: public ObjectOutputStream.PutField putFields ; protected void annotateClassClass cl; protected void annotateProxyClassClass cl; protected boolean enableReplaceObjectboolean enable; protected Object replaceObjectObject obj; protected void drain ; protected void writeObjectOverrideObject obj; protected void writeClassDescriptorObjectStreamClass classdesc; protected void writeStreamHeader ; These methods are more important to people who tailor the serialization algorithm to a particular use or develop their own implementation of serialization. As such, they require a deeper understanding of the serialization algorithm. Well discuss these methods in more detail later, after weve gone over the actual algorithm used by the serialization mechanism.10.2.2 ObjectInputStream
ObjectInputStream , defined in the java.io package, implements the reading-in part of the serialization algorithm. It is the companion to ObjectOutputStream ™objects serialized using ObjectOutputStream can be deserialized using ObjectInputStream . Like ObjectOutputStream , the methods implemented by ObjectInputStream can be grouped into three categories: methods that read information from the stream, methods that are used to control the streams behavior, and methods that are used to customize the serialization algorithm.10.2.2.1 The read methods
The first, and most intuitive, category consists of the read methods: public int read ; public int readbyte[] b, int off, int len; public boolean readBoolean ; public byte readByte ; public char readChar ; public double readDouble ; public float readFloat ; public intreadInt ; public long readLong ; public Object readObject ; public short readShort ; public byte readUnsignedByte ; public short readUnsignedShort ; public String readUTF ; void defaultReadObject ; Just as with ObjectOutputStream s write methods, these methods should be familiar. readFloat , for example, works exactly as you would expect after reading Chapt er 1 : it reads four bytes from the stream and converts them into a single floating-point number, which is returned by the method call. And, again as with ObjectOutputStream , there are two new methods here: readObject and defaultReadObject . Just as writeObject serializes an object, readObject deserializes it. Deserializing an object involves doing two things: creating an ObjectInputStream and then calling readObject . The following code snippet shows the entire process, creating a copy of an object and all the objects to which it refers from a file: FileInputStream underlyingStream = new FileInputStreamC:\\temp\\test; ObjectInputStream deserializer = new ObjectInputStreamunderlyingStream; Object deserializedObject = deserializer.readObject ; This code is exactly inverse to the code we used for serializing the object in the first place. If we wanted to make a deep copy of a serializable object, we could first serialize the object and then deserialize it, as in the following code example: ByteArrayOutputStream memoryOutputStream = new ByteArrayOutputStream ; ObjectOutputStream serializer = new ObjectOutputStreammemoryOutputStream; serializer.writeObjectserializableObject; serializer.flush ; ByteArrayInputStream memoryInputStream = new ByteArrayInputStreammemoryOutputStream. toByteArray ; ObjectInputStream deserializer = new ObjectInputStreammemoryInputStrea m; Object deepCopyOfOriginalObject = deserializer.readObject ; This code simply places an output stream into memory, serializes the object to the memory stream, creates an input stream based on the same piece of memory, and runs the deserializer on the input stream. The end result is a deep copy of the object with which we started.10.2.2.2 The stream manipulation methods
Parts
» OReilly.Java.Rmi. 2313KB Mar 29 2010 05:03:49 AM
» Writing data Resource management
» Some Useful Intermediate Streams
» Revisiting the ViewFile Application
» Protocols Metadata Protocols and Metadata
» The accept method A Simple Web Server
» Customizing Socket Behavior Sockets
» Direct Stream Manipulation Subclassing Socket Is a Better Solution
» A Special-Purpose Socket Special-Purpose Sockets
» Factories Socket Factories Special-Purpose Sockets
» Registering providers Using SSL with JSSE
» Configuring SSLServerSocket Using SSL with JSSE
» A Network-Based Printer A Socket-Based Printer Server
» The Basic Objects A Socket-Based Printer Server
» DocumentDescription Encapsulation and Sending Objects
» ClientNetworkWrapper Network-Aware Wrapper Objects
» ServerNetworkWrapper Network-Aware Wrapper Objects
» Passing by Value Versus Passing by Reference
» The Architecture Diagram Revisited
» The Printer Interface Implementing the Basic Objects
» Examining the skeleton Implementing a Printer
» DocumentDescription The Data Objects
» The Client Application Summary
» The Bank Example Introducing the Bank Example
» Security Scalability Design Postponements
» The Basic Use Case A Distributed Architecturefor the Bank Example
» Partial Failures Problems That Arise in Distributed Applications
» Network Latency Problems That Arise in Distributed Applications
» Memory, in general, is not an issue here Sockets in RMI arent a limitation either
» Applying this to Bank versus Accounts
» Should We Implement Bank or Account?
» Iterators, again Applying this to the Account interface
» Applying this to the Account interface
» Data Objects Dont Usually Have Functional Methods Interfaces Give You the Data Objects
» Accounting for Partial Failure
» A Server That Extends UnicastRemoteObject A Server That Does Not Extend UnicastRemoteObject
» The benefits of UnicastRemoteObject
» The costs of UnicastRemoteObject
» Getting Rid of the Skeletons
» Build Test Applications The Rest of the Application
» Dont Hold Connections to a Server Youre Not Using
» Validate Arguments on the Client Side Whenever Reasonable
» The Actual Client Application
» Deploying the Application The Rest of the Application
» Drilling Down on Object Creation
» The write methods ObjectOutputStream
» The stream manipulation methods Methods that customize the serialization mechanism
» The read methods ObjectInputStream
» Declaring transient fields Implementing writeObject and readObject
» Implement the Serializable Interface Make Sure That Superclass State Is Handled Correctly
» The Data Format The Serialization Algorithm
» Writing A Simplified Version of the Serialization Algorithm
» annotateClass replaceObject RMI Customizes the Serialization Algorithm
» Maintaining Direct Connections The Serialization Algorithm
» The Two Types of Versioning Problems
» How Serialization Detects When a Class Has Changed Implementing Your Own Versioning Scheme
» Serialization Depends on Reflection Serialization Has a Verbose Data Format
» It Is Easy to Send More Data Than Is Required
» Comparing Externalizable to Serializable
» The Calling Stack Basic Terminology
» The Heap Threads Basic Terminology
» Mutexes Applying This to the Printer Server
» Controlling Individual Threads Threading Concepts
» Coordinating Thread Activities Threading Concepts
» Cache Management Assigning Priorities to Threads
» The effects of synchronization on the threads local cache
» The wait methods The notify methods
» Starting a thread is easy Stopping a thread is harder
» Using Runnable instead of subclassing Thread Useful methods defined on the Thread class
» The Basic Task Implementing Threading
» Applying this to the bank example
» Synchronize around the smallest possible block of code
» Dont synchronize across device accesses
» Concurrent modification exceptions Be Careful When Using Container Classes
» Start with Code That Works Use Containers to Mediate Interthread Communication
» Immutable Objects Are Automatically Threadsafe Always Have a Safe Way to Stop Your Threads
» Pay Careful Attention to What You Serialize
» Use Threading to Reduce Response-Time Variance Limit the Number of Objects a Thread Touches
» Acquire Locks in a Fixed Order Use Worker Threads to Prevent Deadlocks
» The Idea of a Pool Two Interfaces That Define a Pool
» A First Implementation of Pooling
» Problems with SimplePool Pools: An Extended Example
» The Creation Thread Pools: An Extended Example
» Gradually Shrinking the Pool
» What Were Testing Testing the Bank Application
» When Are Naming Services Appropriate?
» bind , rebind , and unbind lookup and list
» Bootstrapping the Registry The RMI Registry Is an RMI Server
» Querying the Registry Launching an Application-Specific Registry
» Filesystems Yellow pages The general idea of directories and entries
» Security Issues The RMI Registry
» Operations on contexts Hierarchies
» Attributes are string-valued, name-value pairs
» Federation Federation and Threading
» Value Objects Represent Sets and Lists Paths, Names, and Attributes Are All Distinct
» AttributeSet The Value Objects
» Path and ContextList The Value Objects
» The Context Interface The Java Naming and Directory Interface JNDI
» Using JNDI with the Bank Example
» How RMI Solves the Bootstrapping Problem
» Ordinary Garbage Collection Distributed Garbage Collection
» Defining Network Garbage Distributed Garbage Collection
» Leasing Distributed Garbage Collection
» The Actual Distributed Garbage Collector The Unreferenced Interface
» The Standard Log RMIs Logging Facilities
» The Specialized Logs RMIs Logging Facilities
» java.rmi.server.randomIDs sun.rmi.server.exceptionTrace
» sun.rmi.dgc.client.gcInterval sun.rmi.dgc.server.gcInterval
» sun.rmi.dgc.checkInterval sun.rmi.dgc.cleanInterval
» Resource Management Factories and the Activation Framework
» A Basic Factory Implementing a Generic Factory
» The new factory Building on the Account-Locking Mechanism
» The new account The launch code and the client
» Persistence and the Server Lifecycle
» Making a server into an activatable object
» Deploying an Activatable System
» ActivationDesc, ActivationGroupDesc, and ActivationGroup in More Detail
» Shutting Down an Activatable Server
» -port -log rmid Command-Line Arguments
» sun.rmi.server.activation.debugExec
» A Final Word About Factories
» Implementing Serializable Implementing equals and hashCode
» Modifying Ordinary Servers Incorporating a Custom Socket into an Application
» Modifying Activatable Servers Incorporating a Custom Socket into an Application
» Interaction with Parameters Incorporating a Custom Socket into an Application
» A Redeployment Scenario How Dynamic Classloading Works
» A Multiple-Deployment Scenario How Dynamic Classloading Works
» Requesting a Class The Class Server
» Receiving a Class Handling JAR files
» Suns Class Server The Class Server
» Server-Side Changes Using Dynamic Classloadingin an Application
» Naming-Service Changes Using Dynamic Classloadingin an Application
» Client-Side Changes Disabling Dynamic Classloading Entirely
» A Different Kind of Security Problem
» AWT permissions The Types of Permissions
» File permissions Socket permissions
» Property permissions The Types of Permissions
» Installing an Instance of SecurityManager
» How a Security Manager Works java.security.debug
» Using Security Policies with RMI Policy Tool
» Printer-Type Methods Report-Type Methods
» Client-side polling Polling code in the printer application
» Server-side callbacks Define a client-side callback interface
» Implement the client-side interface
» Server-evaluation models Ch a pt e r 7
» Iterators on the client side
» Implementing Background Downloading on the Client Side
» The Common Gateway Interface Servlets
» Naming services and the server machine
» The Servlet Code A Servlet Implementationof HTTP Tunneling
» Modifying the Tunneling Mechanism
» Disabling HTTP Tunneling HTTP Tunneling
» Defining the Interface Generating Stubs and Skeletons
» The Server The Launch and Client Code
Show more