How Serialization Detects When a Class Has Changed Implementing Your Own Versioning Scheme
10.5.2 How Serialization Detects When a Class Has Changed
In order for serialization to gracefully detect when a versioning problem has occurred, it needs to be able to detect when a class has changed. As with all the other aspects of serialization, there is a default way that serialization does this. And there is a way for you to override the default. The default involves a hashcode. Serialization creates a single hashcode, of type long , from the following information: • The class name and modifiers • The names of any interfaces the class implements • Descriptions of all methods and constructors except private methods and constructors • Descriptions of all fields except private , static , and private transient This single long , called the classs stream unique identifier often abbreviated suid , is used to detect when a class changes. It is an extraordinarily sensitive index. For example, suppose we add the following method to Money : public boolean isBigBucks { return _cents 5000; } We havent changed, added, or removed any fields; weve simply added a method with no side effects at all. But adding this method changes the suid . Prior to adding it, the suid was 6625436957363978372L ; afterwards, it was -3144267589449789474L . Moreover, if we had made isBigBucks a protected method, the suid would have been 4747443272709729176L . These numbers can be computed using the serialVer program that ships with the JDK. For example, these were all computed by typing serialVer com.ora.rmibook.chapter10.Money at the command line for slightly different versions of the Money class. The default behavior for the serialization mechanism is a classic better safe than sorry strategy. The serialization mechanism uses the suid , which defaults to an extremely sensitive index, to tell when a class has changed. If so, the serialization mechanism refuses to create instances of the new class using data that was serialized with the old classes.10.5.3 Implementing Your Own Versioning Scheme
While this is reasonable as a default strategy, it would be painful if serialization didnt provide a way to override the default behavior. Fortunately, it does. Serialization uses only the default suid if a class definition doesnt provide one. That is, if a class definition includes a static final long named serialVersionUID , then serialization will use that static final long value as the suid . In the case of our Money example, if we included the line: private static final long serialVersionUID = 1; in our source code, then the suid would be 1, no matter how many changes we made to the rest of the class. Explicitly declaring serialVersionUID allows us to change the class, and add convenience methods such as isBigBucks , without losing backwards compatibility. serialVersionUID doesnt have to be private. However, it must be static , final , and long . The downside to using serialVersionUID is that, if a significant change is made for example, if a field is added to the class definition, the suid will not reflect this difference. This means that the deserialization code might not detect an incompatible version of a class. Again, using Money as an example, suppose we had: public class Money extends ValueObject { private static final long serialVersionUID = 1; protected int _cents; and we migrated to: public class Money extends ValueObject { private static final long serialVersionUID = 1; public float amount; public Currency typeOfMoney; } The serialization mechanism wont detect that these are completely incompatible classes. Instead, when it tries to create the new instance, it will throw away all the data it reads in. Recall that, as part of the metadata, the serialization algorithm records the name and type of each field. Since it cant find the fields during deserialization, it simply discards the information. The solution to this problem is to implement your own versioning inside of readObject and writeObject . The first line in your writeObject method should begin: private void writeObjectjava.io.ObjectOutputStream out t hrows IOException { stream.writeIntVERSION_NUMBER; .... } In addition, your readObject code should start with a switch statement based on the version number: private void readObjectjava.io.ObjectInputStream in throws IOException, ClassNotFoundException { int version = in.readInt ; switchversion { version specific demarshalling code. ....} } Doing this will enable you to explicitly control the versioning of your class. In addition to the added control you gain over the serialization process, there is an important consequence you ought to consider before doing this. As soon as you start to explicitly version your classes, defaultWriteObject and defaultReadObject lose a lot of their usefulness. Trying to control versioning puts you in the position of explicitly writing all the marshalling and demarshalling code. This is a trade-off you might not want to make.10.6 Performance Issues
Parts
» OReilly.Java.Rmi. 2313KB Mar 29 2010 05:03:49 AM
» Writing data Resource management
» Some Useful Intermediate Streams
» Revisiting the ViewFile Application
» Protocols Metadata Protocols and Metadata
» The accept method A Simple Web Server
» Customizing Socket Behavior Sockets
» Direct Stream Manipulation Subclassing Socket Is a Better Solution
» A Special-Purpose Socket Special-Purpose Sockets
» Factories Socket Factories Special-Purpose Sockets
» Registering providers Using SSL with JSSE
» Configuring SSLServerSocket Using SSL with JSSE
» A Network-Based Printer A Socket-Based Printer Server
» The Basic Objects A Socket-Based Printer Server
» DocumentDescription Encapsulation and Sending Objects
» ClientNetworkWrapper Network-Aware Wrapper Objects
» ServerNetworkWrapper Network-Aware Wrapper Objects
» Passing by Value Versus Passing by Reference
» The Architecture Diagram Revisited
» The Printer Interface Implementing the Basic Objects
» Examining the skeleton Implementing a Printer
» DocumentDescription The Data Objects
» The Client Application Summary
» The Bank Example Introducing the Bank Example
» Security Scalability Design Postponements
» The Basic Use Case A Distributed Architecturefor the Bank Example
» Partial Failures Problems That Arise in Distributed Applications
» Network Latency Problems That Arise in Distributed Applications
» Memory, in general, is not an issue here Sockets in RMI arent a limitation either
» Applying this to Bank versus Accounts
» Should We Implement Bank or Account?
» Iterators, again Applying this to the Account interface
» Applying this to the Account interface
» Data Objects Dont Usually Have Functional Methods Interfaces Give You the Data Objects
» Accounting for Partial Failure
» A Server That Extends UnicastRemoteObject A Server That Does Not Extend UnicastRemoteObject
» The benefits of UnicastRemoteObject
» The costs of UnicastRemoteObject
» Getting Rid of the Skeletons
» Build Test Applications The Rest of the Application
» Dont Hold Connections to a Server Youre Not Using
» Validate Arguments on the Client Side Whenever Reasonable
» The Actual Client Application
» Deploying the Application The Rest of the Application
» Drilling Down on Object Creation
» The write methods ObjectOutputStream
» The stream manipulation methods Methods that customize the serialization mechanism
» The read methods ObjectInputStream
» Declaring transient fields Implementing writeObject and readObject
» Implement the Serializable Interface Make Sure That Superclass State Is Handled Correctly
» The Data Format The Serialization Algorithm
» Writing A Simplified Version of the Serialization Algorithm
» annotateClass replaceObject RMI Customizes the Serialization Algorithm
» Maintaining Direct Connections The Serialization Algorithm
» The Two Types of Versioning Problems
» How Serialization Detects When a Class Has Changed Implementing Your Own Versioning Scheme
» Serialization Depends on Reflection Serialization Has a Verbose Data Format
» It Is Easy to Send More Data Than Is Required
» Comparing Externalizable to Serializable
» The Calling Stack Basic Terminology
» The Heap Threads Basic Terminology
» Mutexes Applying This to the Printer Server
» Controlling Individual Threads Threading Concepts
» Coordinating Thread Activities Threading Concepts
» Cache Management Assigning Priorities to Threads
» The effects of synchronization on the threads local cache
» The wait methods The notify methods
» Starting a thread is easy Stopping a thread is harder
» Using Runnable instead of subclassing Thread Useful methods defined on the Thread class
» The Basic Task Implementing Threading
» Applying this to the bank example
» Synchronize around the smallest possible block of code
» Dont synchronize across device accesses
» Concurrent modification exceptions Be Careful When Using Container Classes
» Start with Code That Works Use Containers to Mediate Interthread Communication
» Immutable Objects Are Automatically Threadsafe Always Have a Safe Way to Stop Your Threads
» Pay Careful Attention to What You Serialize
» Use Threading to Reduce Response-Time Variance Limit the Number of Objects a Thread Touches
» Acquire Locks in a Fixed Order Use Worker Threads to Prevent Deadlocks
» The Idea of a Pool Two Interfaces That Define a Pool
» A First Implementation of Pooling
» Problems with SimplePool Pools: An Extended Example
» The Creation Thread Pools: An Extended Example
» Gradually Shrinking the Pool
» What Were Testing Testing the Bank Application
» When Are Naming Services Appropriate?
» bind , rebind , and unbind lookup and list
» Bootstrapping the Registry The RMI Registry Is an RMI Server
» Querying the Registry Launching an Application-Specific Registry
» Filesystems Yellow pages The general idea of directories and entries
» Security Issues The RMI Registry
» Operations on contexts Hierarchies
» Attributes are string-valued, name-value pairs
» Federation Federation and Threading
» Value Objects Represent Sets and Lists Paths, Names, and Attributes Are All Distinct
» AttributeSet The Value Objects
» Path and ContextList The Value Objects
» The Context Interface The Java Naming and Directory Interface JNDI
» Using JNDI with the Bank Example
» How RMI Solves the Bootstrapping Problem
» Ordinary Garbage Collection Distributed Garbage Collection
» Defining Network Garbage Distributed Garbage Collection
» Leasing Distributed Garbage Collection
» The Actual Distributed Garbage Collector The Unreferenced Interface
» The Standard Log RMIs Logging Facilities
» The Specialized Logs RMIs Logging Facilities
» java.rmi.server.randomIDs sun.rmi.server.exceptionTrace
» sun.rmi.dgc.client.gcInterval sun.rmi.dgc.server.gcInterval
» sun.rmi.dgc.checkInterval sun.rmi.dgc.cleanInterval
» Resource Management Factories and the Activation Framework
» A Basic Factory Implementing a Generic Factory
» The new factory Building on the Account-Locking Mechanism
» The new account The launch code and the client
» Persistence and the Server Lifecycle
» Making a server into an activatable object
» Deploying an Activatable System
» ActivationDesc, ActivationGroupDesc, and ActivationGroup in More Detail
» Shutting Down an Activatable Server
» -port -log rmid Command-Line Arguments
» sun.rmi.server.activation.debugExec
» A Final Word About Factories
» Implementing Serializable Implementing equals and hashCode
» Modifying Ordinary Servers Incorporating a Custom Socket into an Application
» Modifying Activatable Servers Incorporating a Custom Socket into an Application
» Interaction with Parameters Incorporating a Custom Socket into an Application
» A Redeployment Scenario How Dynamic Classloading Works
» A Multiple-Deployment Scenario How Dynamic Classloading Works
» Requesting a Class The Class Server
» Receiving a Class Handling JAR files
» Suns Class Server The Class Server
» Server-Side Changes Using Dynamic Classloadingin an Application
» Naming-Service Changes Using Dynamic Classloadingin an Application
» Client-Side Changes Disabling Dynamic Classloading Entirely
» A Different Kind of Security Problem
» AWT permissions The Types of Permissions
» File permissions Socket permissions
» Property permissions The Types of Permissions
» Installing an Instance of SecurityManager
» How a Security Manager Works java.security.debug
» Using Security Policies with RMI Policy Tool
» Printer-Type Methods Report-Type Methods
» Client-side polling Polling code in the printer application
» Server-side callbacks Define a client-side callback interface
» Implement the client-side interface
» Server-evaluation models Ch a pt e r 7
» Iterators on the client side
» Implementing Background Downloading on the Client Side
» The Common Gateway Interface Servlets
» Naming services and the server machine
» The Servlet Code A Servlet Implementationof HTTP Tunneling
» Modifying the Tunneling Mechanism
» Disabling HTTP Tunneling HTTP Tunneling
» Defining the Interface Generating Stubs and Skeletons
» The Server The Launch and Client Code
Show more