F. LatihanKasusTugas Umpan Balik dan Tindak Lanjut
Modul Pelatihan Matematika SMA
73
Suku ke-25 adalah = 6
+ =
Dari hasil dan , didapat a = 7 dan b = 11 Jadi, suku pertama
= dan beda = . b.
Berdasarkan hasil a, didapat = dan = sehingga rumus umum suku
ke-n adalah = + –
= + − .
Karena u
n
= 238 maka berlaku +
− = – =
− =
+ = =
Jadi, suku barisan yang bernilai 249 adalah suku ke-35. Contoh :
Misalkan seutas tali dipotong menjadi 50 potong yang berbeda dan membentuk barisan aritmatika. Jika panjang tali potongan yang ke-10 dan panjang tali potongan
ke-25 berturut turut adalah 74 cm dan 179 cm. a.
Tentukan panjang tali potongan pertama dan selisih setiap dua potongan tali yang berurutan.
b. Tentukan potongan tali ke berapa, jika diketahui panjang tali tersebut 249 cm. Jawab
a. Berdasarkan soal, diketahui bahwa permasalahan tersebut merupakan masalah
barisan aritmatika, dengan panjang potongan tali pertama adalah a dan selisih panjang dua tali yang berturutan adalah beda b.
Misalkan rumum umum suku ke-n dituliskan = + −
maka didapat suku ke-10 adalah
= + =
Suku ke-25 adalah = 6
+ =
Dari hasil dan , didapat = dan =
Jadi, panjang tali pertama adalah a = 11 cm dan beda b = 7 cm. b. Berdasarkan hasil a, didapat suku pertama a = 11 cm dan b = 7 cm sehingga suku
ke-n adalah = + –
= + − .
Karena u
n
= 249 maka berlaku +
− = – =
– = + =
= . Jadi, potongan tali yang memiliki panjang 249 cm adalah potongan tali ke-35.
74
Contoh : Misalkan suatu keluarga A memiliki lima anak, dengan umur yang membentuk
barisan aritmetika. Umur yang paling tua adalah 24 tahun dan umur anak yang ketiga adalah 14 tahun. Tentukan umur masing-masing anak dari keluarga A tersebut.
Jawab Untuk menyelesaikan masalah ini, pergunakan sifat dari suku umum u
n
. Ingat, bahwa u
p
– u
q
= p-q b dan u
p
=
−
+
+
. Misalkan barisan aritmetika dari umur dari anak adalah
� − , � − , �, � + , � + . mengapa barisan aritmetikanya dimisalkan begitu?.
Karena anak kelima berumur 24 tahun dan anak ketiga berumur 14 tahun maka berlaku
� = � − + � + =
+ = = .
Di sisi lain, didapat – = 24 – 14 = 2b b = 5.
Dengan demikian, diperoleh suku pertama = � − = – . = , suku
kedua = � − = – = , dan suku keempat
= , beda b=2 serta barisan aritmetika yang berbentuk adalah 4, 9, 14, 19, 24.