multikolieritas yang sempurna maka akan diperoleh nilai R
2
yang tinggi tetapi banyak variabel yang tidak signifikan.
3. Krtiteria Statistika Ada beberapa uji yang dapat digunakan untuk menentukan kesesuaian
model regresi yang didapat secara statistik.
a. Uji – F
Uji –F adalah statistik uji yang diigunakan untuk mengukur signifikan
parameter secara keseluruhan untuk mengetahui faktor-faktor X
i
secara bersamaan simultan terhadap Y. Langkah pertama untuk melakukan uji-t
adalah dengan menuliskan hipotesis pengujian. H
: β
t
= 0 dengan
t = 1,2,3,….,n H
1
: β
t
≠ 0 sekurang-kurangnya ada satu X
t
yang mempengaruhi Y Suatu faktor X akan mempengaruhi Y secara bersama-sama dapat dilihat
dari nilai F
statistik.
Jika F
statistik
lebih besar dari F
tabel,
maka minimal ada satu yang X yang mempengaruhi Y. Sedangkan jika F
statistik.
lebih kecil dari F
tabel,
maka dipastikan tidak ada satupun X yang mempengaruhi Y.
1. F
statistik .
F
tabel
maka H ditolak artinya minimal ada satu faktor X yang
berpengaruh nyata terhadap Y. 2. F
statistik
F
tabel
maka H diterima, artinya faktor X secara bersama tidak
berpengaruh nyata terhadap Y.
b. Uji – t
Uji –t adalah statistik uji yang diigunakan untuk mengukur signifikan
parameter secara individual dan disebut juga sebagai uji signifikansi secara parsial
karena melihat signifikansi masing-masing variabel yang terdapat di dalam model. Uji-t dalam penelitian ini digunakan untuk mengetahui pengaruh masing-masing
faktor bebas explanatory factor terhadap penawaran ekspor televisi Indonesia. Besaran yang digunakan dalam uji ini adalah statistik t. Langkah pertama
untuk melakukan uji-t adalah dengan menuliskan hipotesis pengujian. H
: β
t
= 0 dengan
t = 1,2,3,….,n H
1
: β
t
≠ 0 Jika statistik t yang didapat pada taraf nyata sebesar
α lebih besar daripada t
tabel
t
satistik
t
tabel
, maka tolak H . Kesimpulannya koefisien dugaan
β ≠ 0 artinya variabel yang diuji berpengaruh nyata terhadap variabel tak bebas. Sebaliknya jika
t
statistik
lebih kecil daripada t
tabel
t
statistik
t
tabel
pada taraf nyata sebesar α, maka
terima H . Kesimpulannya koefisien dengan
β = 0 artinya variabel yang diuji tidak berpengaruh nyata terhadap variabel tak bebas. Semakin kecil
α berarti semakin mengurangi resiko salah. Model yang diduga akan semakin baik apabila
semakin banyak variabel bebas yang signifikan atau berpengaruh nyata terhadap variabel tak bebasnya.
c. Uji R