Jika gaji bulanan tiap

52 Aktif Belajar Matematika untuk Kelas XI Program Bahasa

1. Tentukan kuartil bawah, tengah, atas, nilai

rentang, rentang interkuartil, dan simpangan kuartil dari data berikut. a . 1, 5, 7, 2, 9, 4, 10, 12, 16, 18, 13 b . 20, 5, 1, 5, 3, 9, 11, 2, 0, 1, 4, 3

2. Laju produksi v pada suatu perusahaan

pem buatan alat-alat rumah tangga dicatat dalam tabel berikut. Laju Produksi Frekuensi 21 – 30 31 – 40 41 – 50 51 – 60 61 – 70 71 – 80 5 20 38 25 10 2

a. Buatlah sebuah tabel frekuensi kumu-

latif. b . Gunakan tabel tersebut untuk menaksir i kuartil-kuartil Q 1 , Q 2 , dan Q 3 , ii desil ke-1 dan ke-9, dan iii rentang interkuartil dan simpangan kuartil.

3. Lukislah diagram kotak garis untuk data

berikut. 52, 61, 67, 75, 79, 81, 82, 84, 90, 95, 96 a. Berapakah rentang data ini?

b. Pengamatan apakah yang dapat Anda

lihat dari diagram ini? 4 . Jelaskan secukupnya tentang

a. rentang;

b. rentang interkuartil;

c. simpangan kuartil;

d . data pencilan;

e. simpangan rata-rata;

f. ragam;

g. simpangan baku.

5. Mengapa simpangan baku paling banyak

digunakan sebagai ukuran penyebaran data dalam analisis statistik? Jelaskan alasannya. 6 . Berikut ini adalah rincian gaji tahunan pe- gawai pada suatu perusahaan. Kerjakan soal-soal berikut di buku latihan Anda. 1. Rumus Sesuai dengan Dei nisi. s 2 = S i k i i f x i i n =1 2 i f x f x i i i i i x - = S i k i i f x i i n =1 2 i f x f x i i i i i x - dengan n = f x f x f x n i f x f x i k i i f x f x i k = = Â Â = 1 1 f x f x , dan x i = nilai tengah kelas ke-i.

2. Rumus Praktis.

s 2 = x 2 – x 2 dan s = x x 2 2 - , dengan x = S i k i i f x i i i i n =1 , x 2 = S i k i i f x n =1 2 Sekarang, coba Anda tentukan ragam dan simpangan baku dari data pada Contoh Soal 1.19. Uji Kemampuan 1.3 Soal Menantang Simpangan baku dari data 2, 3, 6, 8, 11 adalah .... a. 3,3 d. 3,6 b. 3,4 e. 3,7 c. 3,5 UAN 2007 53 Statistika 1 presiden direktur Rp210 juta 1 wakil presiden direktur Rp120 juta 1 manager Rp40 juta 1 supervisor Rp22 juta 1 operator mesin Rp12 juta 5 pekerja pabrik Rp42 juta 6 pekerja magang Rp13 juta

a. Tentukan mean, median, dan modus

dari data gaji tahunan tersebut. Gunakan kalkulator jika diperlukan. b . Gaji manakah yang termasuk pencilan?

7. Tentukan simpangan rata-rata dari data

berikut. a . 4, 6, 7, 8, 9, 10, 12 b . 48, 50, 52, 55, 57, 69, 81, 84 c . 9, 3, 8, 8, 9, 8, 9, 18

8. Tentukan simpangan rata-rata dari data berat

benda berikut. Berat Benda x i f i 60 – 62 63 – 65 66 – 68 69 – 71 72 – 74 61 64 67 70 73 5 18 42 27 8

9. Hitung simpangan baku berikut dengan

rumus s = S i k i i f x i i n =1 2 i f x f x i i i i i x - , dan cara kedua dengan rumus praktis s = x x 2 2 x x x x x x x x 2 2 2 2 2 2 2 2 . Kemudian, gunakan kalkulator untuk memeriksa hasilnya. a . 4, 6, 7, 8, 9, 10, 12 b . 9, 3, 8, 8, 9, 8, 9, 18

10. Hitung ragam dan simpangan baku untuk

data berikut. a. Panjang f 118 – 126 127 – 135 136 – 144 145 – 153 154 – 162 163 – 171 172 – 180 3 5 9 12 5 4 2 b. Nilai Tes Frekuensi 118 – 126 127 – 135 136 – 144 145 – 153 154 – 162 163 – 171 172 – 180 4 3 11 21 33 15 3

11. Jumlah murid kelas A dan kelas B masing-

masing adalah 30 orang dan 20 orang. Nilai suatu ujian ditunjukkan pada tabel berikut. Rata-Rata Simpangan Baku Kelas A Kelas B 60 50 8 10 Hitunglah rata-rata dan simpangan baku dari nilai seluruh murid 50 orang di kelas A dan B. Soal Terbuka

1. Dari pembahasan mengenai ukuran pe-

nyebaran data, diuraikan bahwa ukuran pemusatan data tidak memberi gambaran lengkap dari distribusi data. Mengapa? Coba Anda jelaskan.

2. Menurut pendapat Anda, mengapa Anda

harus mempelajari pencilan?